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The pRB subsystem

Study of a rare hereditary paediatric cancer has led to the identification of pRB, a tumour-suppressor
implicated in human cancer of many types.  It plays a crucial role in embryogenesis, differentiation,
cellular senescence, and proliferation.  The manifold functions of pRB are mediated solely via
interactions with over 100 proteins, both individually and in higher-order complexes.  Its functions
are modulated chiefly post-translationally, with regulated alterations in phosphorylation state being
the best understood mechanism.  Not surprisingly, many of the elements necessary for regulation of
pRB function have themselves been implicated in tumour suppression or tumorigenesis, in particular,
the cyclins, the CDKs, and the CKIs.

This article provides a general review of pRB structure, interaction, and regulation as a basis for a
discussion of the mechanism by which pRB exerts control over cell-cycle progression.  The relevance
that this may have to tumorigenesis in general, and to melanoma in particular, is then addressed.

1 Retinoblastoma
Retinoblastoma is a paediatric intraocular tumour accounting for 5% of childhood blindness.  It occurs as
an inherited disease with autosomal dominant transmission28 and 90% penetrance76, in which tumours
are usually bilateral and multifocal.  Sporadic cases are also known, but these differ from the typical
hereditary disease in that they are usually unilateral and unifocal, although a hereditary low-penetrance
unifocal phenotype has been described55.  Several modes of treatment exist, including surgery and
radiotherapy, and these are usually curative70 and preserve vision.  However, significant mortality still
occurs after successful treatment of hereditary cases due to the increased incidence of subsequent
primary tumours of various types.

Since rodents infected with adenovirus often developed retinoblastoma-like symptoms267 268 it was
thought that human retinoblastoma may have a similar cause, but no trace of the adenovirus genome

could be found in cells from patients362 386.  A different interpretation began to emerge with the

publication of a seminal paper by Knudson202 that reported the results of a statistical analysis of
retinoblastoma incidence.  The clear inference to be drawn from the data was that retinoblastoma could
develop after the occurrence of just two independent genetic events.  In the case of the hereditary
disease, one of these was presumed to be an inherited trait, while the second, and both in the case of the
sporadic disease, were considered to be somatic changes.  This is the ‘two-hit’ hypothesis.  Although the
two targets were not specifically identified in this work, given the diploid nature of the human genome,
a reasonable working hypothesis was that a defect in only one gene was involved, with two events being
required to disrupt both alleles.  This was supported by loss-of-heterozygosity studies41.

2 The retinoblastoma susceptibility gene, RB1
Mapping
Cytogenetic analysis of retinoblastoma tumours led to the discovery of a frequently deleted
chromosomal region at 13q14, and linkage analysis within kindreds displaying hereditary disease led to
the identification of closely linked microsatellite markers which co-segregated with the disease
phenotype.  These efforts ultimately resulted in the identification of a candidate retinoblastoma
susceptibility gene, RB1106 227 and its authentication110.
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Gene structure and transcriptional regulation
RB1 comprises 27 exons spanning over 200 kbp of genomic DNA28 371, and is transcribed into an mRNA
of 4.6kb length227.  No splice-variants appear to exist in normal tissue, but aberrant splicing resulting in
truncation or skipped exons does occur in tumours236.

The initial RB1 promoter characterisation371 was extended by Gill et al.119, who, by using a series of 5'-
deletion constructs, discovered that a region spanning nucleotides –215 to –179, relative to the initiating
methionine codon, contains the major functional determinants of transcriptional regulation.  They
identified putative SP1, CREB/ATF, and E2F binding sites, together with a potential hormone-response
element.  Surprisingly, the protein that they found to associate with the SP1 site was not SP1, but another
protein they dubbed ‘RBF-1’.  Further work established that it is the GA-binding protein component of
the E4TF1 Ets-family transcription factor complex that binds to this site326.  Mutation at this55, or the
CREB/ATF site322 is associated with a mild, low-penetrance hereditary retinoblastoma phenotype.

A CpG island extends from the promoter into exon one379 and there is evidence that this can be
methylated, preventing binding of E4TF1 and ATF/CREB and causing a 92% reduction in transcription
rate285.  Transcriptional silencing due to promoter methylation coupled with deletion or mutation of the
alternate allele has been causally linked to over 9% of unilateral sporadic retinoblastomas128 284 285, and has
been reported in oligodendroglial72 tumours and glioblastoma273.

There is a consensus that pRB contributes to transcriptional regulation of its own gene, but there is less
accord over the nature of this.  Some opine that E2F transcription factors, regulated by pRB, function as
repressors132 286 334, but others have established that the E2F binding site is dispensable for auto-
repression119.  Positive auto-regulation via the ATF/CREB site has also been reported295.

3 The retinoblastoma-associated protein, pRB
Significance
Perhaps the best gauge of the importance of a protein is the consequence of its absence, as amply
demonstrated in mouse knockout studies.  A degree of perspective is afforded by comparing the effect of
non-expression of two crucial tumour-suppressors: p53 and pRB.  Mice engineered to be Trp53-null are
born apparently normal, anatomically and physiologically.  Only after about six months does their
phenotype of increased tumour incidence emerge§71.  Trp53, and by extension the human TP53, are
tumour-suppressor genes, par excellence, but that is all they are.  In contrast, mice engineered to be Rb1-
null die before day 16 in utero, with major neural tube deformities, flaws in haematopoiesis, and liver
and lens defects§224.  Clearly, Rb1, and by extension RB1, have extremely important biological roles
beyond tumour suppression.  Perhaps the best generalisation of pRB function is to consider it as a key
determiner of cellular fate.  It profoundly influences proliferation, differentiation, senescence, and
apoptosis®135 ®184.  The retinoblastoma-associated protein is no less than the kismet of cells.

Translation
The RB1 mRNA transcript contains an open reading frame encoding 928 amino acids, and SDS-PAGE
immunoblotting detects at least five mobility variants with indicative molecular weights in the range
105–110 kD.  These are believed to result from the adoption of multiple conformations determined by
post-translational covalent modification, addressed further below.  There is some evidence for translation
from a second AUG start site resulting in an amino-terminally truncated variant seen by immunoblotting
as a protein of 98–104 kD indicative molecular weight.  The functional significance of this is unknown.  It
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has also been suggested that sequence variations in the 5' untranslated region may affect mRNA
structure and thence translation efficiency108.

Conservation and homology
Species including plants®§57 ®§82, insects, fish, amphibians, birds, and other mammals have proteins
clearly related to human pRB by sequence similarity {Table 1}.  Interestingly, no close homologues exist
among unicellular organisms such as yeast.  This is entirely in keeping with the principal biological
functions of pRB being the constraint of proliferation and the implementation of differentiation, neither
of which is of great relevance to such an organism.

Sequence comparisonSpecies Common name Homology length
(amino acids) Identity (%) Similarity (%)

Pan troglodytes Chimpanzee 882 98 98
Mus musculus Mouse 928 89 93
Rattus norvegicus Norway rats 900 89 94
Gallus gallus Chicken 937 71 81
Notophthalmus viridescens Eastern red-spotted newt 914 59 75
Xenopus laevis African clawed frog 936 57 74
Canis familiaris Dog 518 95 97
Oncorhynchus mykiss Rainbow trout 944 54 70
Oryzias latipes Japanese medaka fish 942 50 67
Populus (hybrid) Aspen 790 24 40
Chenopodium rubrum Red goosefoot 805 24 40
Arabidopsis thaliana Mouse-ear cress 895 23 40
Euphorbia esula Leafy spurge 528 25 44
Zea mays Maize 765 24 40
Drosophila melanogaster Fruit fly 709 23 40
Pisum sativum Garden pea 792 24 40
Caenorhabditis elegans A nematode worm 870 21 36

Data from NCBI/BLAST.  Comparison is with Homo sapiens pRB.  Similarity implies identity or a conservative
amino acid substitution.

Table 1: pRB protein sequence conservation

Within the human proteome, two proteins are sufficiently similar to pRB in terms of sequence
conservation and function to support the notion of a ‘pocket-protein’ family {Table 2}.  Their degree of
similarity to pRB is of the same order as that of the nearest plant pRB homologues.  Whether this implies
that pRB is strongly conserved and p107 and p130 are closely related, or precisely the opposite, is
entirely subjective.  It is telling, however, that while pRB has been established as a bona fide tumour-
suppressor, there is insufficient evidence to support such a role for either p107 or p130®49.

Sequence comparisonProtein Gene Homology length
(amino acids) Identity (%) Similarity (%)

p107 RBL1 559 27 44
p130 RBL2 703 24 41

Data from NCBI/BLAST.  Comparison is with pRB.  Similarity implies identity or a conservative amino acid
substitution.

Table 2: Human proteins similar to pRB

Tissue-specificity of pRB expression
A comprehensive study of pRB expression in 53 human tissues was performed by Cordon-Cardo and
Richon54.  Expression was seen in all but interstitial matrix, which is essentially acellular.  There was
variability of expression between and within organs, however.  In stratified epithelia, cells in the
proliferating basal layer expressed low levels of pRB, while those in suprabasal layers expressed it
strongly.  In simple epithelia, expression was generally high, but where compartments differing in
proliferation rate were distinguishable, an inverse correlation between expression and proliferation rate
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was seen.  Within the testis, this pattern was again repeated, with non-proliferating Sertoli cells having
intense expression, while spermatogonial cells, spermatocytes, and spermatids had low or undetectable
levels.  Within tissues of the central nervous system, expression was low with the conspicuous exception
of Purkinje cells, where it was intense.  Intense staining was also seen in cells of the peripheral nervous
system.  Among haematopoietic cells, proliferating B-cells expressed high levels of pRB, while that seen
in mature B-cells and in T-cells was much lower.  It was the authors’ overall conclusion that pRB
regulated the proliferation of maturing cells.

Sub-cellular disposition of pRB
The pRB protein is predominantly nuclear during interphase, being associated with low-density
euchromatin.  In metaphase and anaphase, it disperses to the cytoplasm eventually to reassociate with
euchromatin during telophase364.  Hypophosphorylated pRB is tethered to the nucleus, but this linkage is
weakened upon phosphorylation88 373.  Nevertheless, a confocal microscopic study of HL60 cells has
shown that the ratio of nuclear to cytoplasmic pRB is stable both throughout the cell-cycle and during
differentiation, independent of its phosphorylation status420.  However, these cells do not contain
functional p16, an inhibitor of pRB phosphorylation, as they have only a single non-functional mutant
CDKN2A allele311.  Consequently, pRB phosphorylation status may be abnormally high in these cells, and
greater partitioning of pRB to the cytoplasm through reduced tethering may result.

Turnover of pRB
In the normal course of events, pRB levels do not appear to be controlled by regulated proteolysis,
although this does play a role in viral infection123 and in apoptosis95 370.  It has been suggested by one
group107 that a cathepsin-like protease, dubbed SPase, may be involved in the cell-cycle dependent
regulation of pRB, but this has not been confirmed.  There is doubt also over the validity of their
methodology in that, having synchronised cells first by isoleucine starvation, and then by aphidicolin
treatment, the induction of this protease in response to this treatment cannot be excluded.  More recently,
a gene over-expressed in some hepatocellular carcinomas was found to encode a protein, gankyrin, that
binds pRB and facilitates its 26S-proteasome-mediated destruction149.  Data are as yet too sparse to
conclude what the normal role of this protein may be, but the recent finding that it binds CDK4 in
competition with p16, but does not inhibit it, suggests that this role may be significant230.

Function of pRB
Scope of review
With such a broad range of functions, the molecular biology of pRB, and its attendant literature, are
necessarily extensive and complex.  A comprehensive review would fill several volumes, and given the
burgeoning of knowledge in this area, would likely be obsolete before it reached publication.  While
many aspects of pRB are presented below, the emphasis is very much on the role it plays in tumour-
suppression, and in particular, in the regulation of proliferation.

Basis of pRB function
The retinoblastoma-associated protein appears to contain no inherent enzymatic activity and the great
weight of evidence is in favour of protein-protein interaction being its dominant operative mode®263.  If
so, its influence depends on its ability to modify the inter-molecular interactions of the bound protein.
This may be achieved by one of four major mechanisms, given here in order of decreasing apparent
relevance to pRB: masking of interaction domains; constraint of physical location; molecular
matchmaking; and alteration of physical conformation.

pRB
phosphoryla-
tion and the
role of CDK4
and p16 are
discussed
more fully

below.
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Several domains within pRB have been implicated in mediating protein interactions, and conserved
motifs in proteins that bind pRB have also been identified.

pRB-binding motifs
The LXCXE motif
The basis for the retinoblastoma-like effects of adenovirus infection in rodents became clearer with the

discovery that a viral protein, E1A, bound pRB in a step necessary for productive infection403.  Similar
proteins were soon found to be produced by other small DNA viruses83.  When the sequences of these
were determined, many were found to contain a pentapeptide motif, LXCXE, including the adenovirus
E1A protein (LVLDCPENP), the human papillomavirus E7 protein (VDLVCHEQL), and the large-T proteins
of SV40 (ENLFCSEEM) and polyomavirus (PDLFCYEEP).  More recently, the sequence LPCAE has been
implicated in the pRB binding of the NSP90 non-structural protein from the teratogenic human rubella
virus, Rubivirus103.  The novelty here is that Rubivirus is not a DNA virus, but a positive-strand RNA
virus.  This attests to both the crucial role of pRB in mediating cellular affairs, and to the efficacy of the
LXCXE motif in modulating this.  Once identified, the LXCXE motif was found in many cellular proteins
known to interact with pRB {Table 3}, most notably the D-cyclins74 89.

LXCXE relatives
Two variations on the LXCXE motif have been suggested to operate similarly.  The first, IXCXE has been
identified in the transcriptional repressor HBP1, however it was shown that it was the LXCXE motif also
present that mediated its association with p130377.  A stronger case for pRB binding by IXCXE exists with
HEC427, although it was not found to be essential for function.  The second variant is LXSXE, suggested
by Durfee et al.81 as a possible basis for the binding of PPP1CA-2.  They noted, however, that the
domains of pRB associated with the binding of large-T and PPP1CA-2, while similar, were not identical,
leaving open the possibility of a different mode of interaction.  Further supportive evidence for a role for
LXSXE comes from the directed-mutagenesis study in Rubivirus cited above103.  In seeking to determine
the importance of the LPCAE motif, Forng and Atreya altered the cysteine to arginine, and so showed
that this was critical for proliferation.  After approximately one generation time, however, the
proliferation rate increased in correlation with a spontaneous mutation to LPSAE in the motif of interest.

The LXSXE motif is present in the transcription factors JUN, MYC, BRCA1, E2F4, and E2F1 {Table 3},
considered by many to be the most important pRB-interacting protein of all.  Its presence in BRCA1 in
addition to an LXCXE motif may account for the continuing ability of BRCA1 to bind pRB when this
motif is disrupted91.  In addition to these, it is present in ARID3B (ERLESGEPA), ELF1393 (VQLLSSEEL),
ENC1 (VQLLSSEEL), GABPB1 (TGLVSSENS), lamin A/C (ALLNSKEAA, RKLESTESR), RBBP6323

(ALLESDEHT), and TRIP11 (KKLSSAEND, KSLLSQEKE, QLLSSNENF), all of which are known to bind pRB.
Furthermore, it is present in p107 (KHLNSIEEQ) and in pRB itself (SMLKSEEER), perhaps accounting for
reports of oligomerisation in vitro144, and the reported ability of the C-terminus of pRB to block
repression by the A/B pocket in trans136.  The possibility that LXSXE may have a major role in pRB
interactions does not appear to have been fully appreciated as there is very little reported in the
literature.

The DLXX(X)E motif
While inspection of the viral protein sequences revealed the importance of LXCXE, a further potential
binding motif may have been overlooked.  The LXCXE motif within the adenovirus E1A protein CR2
region also conforms to the pattern DLXXXE, as it does in polyomavirus large-T and HPV E7.  In SV40
large-T, this overlap is absent, but a separate instance of DLXXXE exists (QLMDLLGLERSA).  A similar



The pRB subsystem

The pRB subsystem–6

motif, DLXXE, conserved among adenovirus strains, appears in the adjacent CE1 region.  This composite
motif, DLXX(X)E, is present in five of the proteins listed in Table 3, including two with no other
recognised binding motif, notably MDM2.  It is present also in MYOD (DSPDLRFFEDLD), and TRIP11

(LKQDLNDEKKR), both of which bind pRB.

 pRB protein structure

Figure 1: Salient pRB features

N-terminal domains
Sterner et al. have reported two related kinases, both referred to as RbK, that bind pRB within the 89–202
amino acid region, and phosphorylate pRB, and possibly the transactivation domain of MYC, in G2/M.
The pRB domain implicated appears essential for pRB-mediated growth suppression and is altered in
some retinoblastoma patients357 358.  RbK does not appear to have been further characterised.  In addition,
the heat-shock protein HSP73 associates with the pRB 301–372 amino acid region170.

The ‘A’ domain and the ‘B’ pocket
The investigation of viral protein binding led
to the identification of two jointly required
pRB domains {Figure 2}: the ‘A domain’,
spanning amino acids 372–578 [1], and the ‘B
pocket’, spanning amino acids 639–770 [2].
These regions have also been shown to be
necessary for nuclear tethering of pRB374, but
not for growth suppression65.  Structural
studies225 suggest that the B pocket domain
forms a lobe containing an apical cleft which
is the principal binding site [3].  The
conformation of B, and therefore of the
binding cleft, seems to depend on the intact
presence of the A domain.  The functional
combination of these domains is referred to
as the ‘small A/B pocket’310, and it is from
this feature that pRB, p107, and p130 derive
their designation of ‘pocket proteins’.

The large A/B pocket and the C-pocket
The pRB small A/B pocket is also necessary for binding of members of the E2F transcription factor
family310, and, while this may be sufficient for binding in vitro185, it seems likely that an additional pRB
C-terminal domain within the region spanning amino acids 841–870 147 is required in vivo162.  Together
with the small A/B pocket, this is referred to as the ‘large A/B pocket’.  This additional requirement may

Key: pRB A domain = light blue; pRB B pocket = green;
LXCXE-containing nonapeptide from HPV E7 = dark

blue.  Data from Lee et al. 225.  Rendered by Cn3D.

Figure 2: The pRB small A/B pocket
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in part be a consequence of the absence of the LXCXE motif from E2F.  This further suggests that distinct
domains within the A/B region may mediate interaction between LXCXE-bearers and E2F, and therefore,

this binding need not be competitive.  Indeed, simultaneous binding may be essential for function.

This additional domain intersects with the binding domain of the ABL tyrosine kinase, located at amino
acids 768–869 and termed the ‘C-pocket’402.  Despite the overlap, it appears that simultaneous binding by
pRB of ABL via the C-pocket and either E2F via the large, or cyclin-D2 via the small A/B pocket is
possible401.  Within the C-pocket, at amino acid 792, begins a domain implicated in the binding of
MDM2411.  This same region, albeit imprecisely defined, has also been shown to be necessary and
sufficient for the binding of PPP1CA81.

At the extreme C-terminal end of the C-pocket, a motif 870KXLKXL875 exists that is believed to
constitute the principal pRB–cyclin interaction domain for those that do not carry the LXCXE motif, that
is, non-D-cyclins.  It may also provide an alternative interaction mode for those that do4.  One
consequence of this is that it is required for effective targeting of pRB by CDK2, but not CDK4.  Unlike
the relatively stable and abiding interaction between the small A/B pocket and cyclin-D1, that between a
cyclin and the KXLKXL motif appears to be transitory, serving more to direct and orient the associated

kinase with respect to its substrate than to promote an on-going association.

The C-terminal region: amino acids 876–928
Driscoll et al.78 have identified a region spanning amino acids 880–900, dubbed ‘M89’, that appears to be
a critical determinant of C-terminal pRB conformation, and can significantly affect the accessibility of
pRB targets to modifying enzymes, in particular, CDKs.  Their work extended to the identification of
other key determinants of pRB conformation, noted in Table 5, and provided the first insight into the
structural basis for the multiple electrophoretic species of pRB seen.

Cyclin-D1 may have a third mode of interaction with pRB.  Pan et al.292 report that pRB L901 mediates a
productive cyclin-D1 interaction that appears to be distinct from that involving the nearby KXLKXL
motif.  Whether interaction here influences the role of the immediately adjacent M89 region is unknown.

Within M89 is a sequence 883DEADG887, that is a site for caspase-dependent cleavage of pRB during
apoptosis370.  It seems likely that such cleavage would prevent both the association of MDM2, and that of
cyclin-D1 mediated via L901.

pRB-binding proteins
Scope of pRB–protein interactions
At least 129 proteins are believed to interact directly with pRB®263, and a selection of these that have been,
or potentially may be, associated with tumorigenesis, is listed in Table 3.

Competition for pRB binding
There appear to have been no definitive and comprehensive studies either of the mutual competition
among potential pRB binding proteins for access, or of any precedence among any such competitors.  In
some cases, specific data are available, and in others, reasonable inferences can be drawn based on the
apparent necessity of a single, well-defined pRB domain for binding of more than one protein, as with
the B pocket.  Slightly less robust implication of non-competition exists in the form of apparent spatial
separation and non-intersection of binding requirements.  The situation is extremely complicated, as
there are undoubtedly multiple interactions among protein binding, covalent modification, and
conformation.  Such data as pertains to representative proteins interacting via the better-defined pRB
domains is given in Table 4.
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Protein Motif(s) pRB domain(s) Significance

AATF92 DDLGSSEEE
LKDLDEEIFD –

Binding prevents pRB repression of E2F92

AATF also mediates apoptosis290

ABL402 VVLDSTEAL C402 Binding inhibits ABL kinase402

AHR307 DMLYCAESH Probably AB307 Dioxin carcinogenesis307

ATF2295 – C-terminus295 JUN induction388

pRB autoinduction295

BRCA122 91 QKLPCSENP
KKLESSEEN

1) A?B
2) Another 91 BRCA1 regulates genome surveillance397

Cyclin-A4 – 870KXLKXL4 Proliferation regulation®64

Cyclin-E4 – 870KXLKXL4 Proliferation regulation®193

Cyclin-D174 HQLLCCEVE 1) A?B74 89

2) C-terminus§292 Mitogen response; proliferation regulation®342

Cyclin-D2§89 402 MELLCHEVT A?B§89 Mitogen response; proliferation regulation®342

Cyclin-D374 MELLCCEGT A?B74 §89 Mitogen response; proliferation regulation®342

E2F1 QSLLSLEQE AB+147 310 Proliferation regulation180; apoptosis®304

E2F4231 EELMSSEVF AB+? Cell-cycle arrest114

HDAC1244 KRIACEEEF?1

91
1) AB?
2) indirect?213

Chromatin modelling244

Modulation of p53 activity242

HSP7545 EVLFCFEQF AB45 pRB chaperone in M-phase and after heat shock45

ID2218 – AB166 Implicated in proliferation, differentiation, and
apoptosis102 219

JUN278 LKLASPELE 1) A?B278

2) C-terminus278
Implicated in proliferation, oncogenic
transformation, and apoptosis®337

MCM7358 –
N-terminal to
amino acid 380358 DNA replication licensing

MDM2411 QKDLVQELQ C-terminus411 Regulation of p53 activity

MYC320 QKLISEEDL
SLLSSTESS B320 Cellular growth, proliferation, and apoptosis300

p21275 –
1) AB275

2) C-terminus?275 Proliferation regulation; senescence

POLD1208 GKLPCLEIS AB208
Binding stimulates enzyme activity208

Required for S-phase DNA synthesis®150

Required for DNA mismatch237 and UVR repair425

PPP1CA81 PDLQSMEQI C-terminus81 368 Regulation of pRB by dephosphorylation®369

PRDM234

VNDLGEEEEE
PEDLLEEPK
TEDLPKEPL
GIDLPVENP

A?B33 Tumour-suppressing, proapoptotic
methyltransferase®35

prohibitin396 – B396 Inhibitor of E2F transactivation396

RAF1395 QILSSIELL A?B395 Major receptor tyrosine kinase signal transduction
element®192

RBBP194 ETLVCHEVD Probably AB94 Repression of E2F-dependent transcription214

RBBP4309 LKLHSFESH 1) A?B?309

2) Indirect281 Chromatin remodelling281 407

RBBP7309 – Probably A?B161 Modulation of BRCA1 function46

RBBP8112 AELECEEDV 1) Probably AB112

2) Another?65 Modulation of BRCA1 function

RBBP9405 TELHCDEKT Probably AB405 Role in cellular transformation405

RFC1265
ASLVCQELG
KALGSKEIP
GVLESIERD

Probably AB301 Component of replication factor C; necessary for
processive DNA synthesis.

TAF1335 KVLSSTEVL
SDLDSDE

1) C335

2) AB+346 RNA polymerase II regulation®398

UBTF40 YSLYCAELM Probably AB40 RNA polymerase I (ribosomal RNA) regulation390

Key: – = no recognised motif, or no binding domain data; B = B-pocket; C = C-pocket; AB = small A/B pocket;
AB+ = large A/B pocket; ? = domain implicated, but not proven to be necessary.  Binding motifs and domains
are described in the text.

Table 3: Selected pRB-interacting proteins
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pRB RbK HSP73 Cyclin-D1a E2F ABL MDM2 PP1α Cyclin-A
HSP73 –
Cyclin-D1a (+) (+)
E2F1 (+) (+) +
ABL (+) (+) + +
MDM2 (+) (+) (+) X (X)
PP1α (+) (+) + (X) (X) (X)
Cyclin-A (+) (+) (+) + – – –
Cyclin-D1b (+) (+) (+) (+) – – – –

a = binding via LXCXE motif and small A/B pocket.  b = binding via pRB C-terminal domain

Key: X = compete for binding; + = can bind simultaneously; – = no data; (+), (X) = inferred

Table 4: Competition matrix for pRB binding

Phosphorylation of pRB
The earliest studies of the retinoblastoma-associated protein revealed that it was a nuclear
phosphoprotein228, and that differences in phosphorylation status accounted for the multiplicity of
electrophoretic species111 seen.  This observation facilitated the discovery that the phosphorylation state
of pRB altered in synchrony with progression through the cell division cycle, with it being minimally
phosphorylated upon synthesis and rapidly and sequentially phosphorylated at the G1–S transition255.
The basis for this sequencing lies partly in subtle differences in substrate specificity of the relevant
kinases424 and partly in their successive activation.  It is also believed that conformational changes
wrought by earlier phosphorylations are necessary to allow subsequent access to other sites.  The
significance of this sequential phosphorylation lies in the apparent independence of control of protein
binding among the different interaction domains within pRB200.  The proportion of phosphorylated pRB
decreases at the beginning at anaphase238, indicating the existence of regulated phosphatase activity.

pRB kinases
It was soon found that pRB was a substrate for the CDC2 kinase in vitro234, and of this229, or related
kinases in vivo198.  The latter possibility was confirmed with the discovery that pRB was a substrate of
CDK26, CDK4188, and the closely related CDK6254.  Of the sixteen potential SER/THR–PRO CDK targets in
pRB, thirteen have been found to be phosphorylated in vivo {Figure 1} and considerable data concerning
the timing, kinase-specificity and consequence of these phosphorylations have been gathered {Table 5}.

Upon mitogen stimulation, pRB is phosphorylated by RAF1 before it is by cyclin-D–CDK4395.  This may
provide an efficient link between RTK activation and the abrogation of pRB growth-suppression
operative independently of that supplied by cyclin-D regulated kinases.  This also places pRB
downstream of RAS, and so may contribute to the oncogenic potential of the latter299.

The RbK kinases of Sterner et al., also phosphorylate the pRB N-terminus during G2/M, and are
apparently distinct from CDC2, CDK2, CDK4, MAPK1, and MAPK3357.

pRB phosphatases
Given the established importance of pRB phosphorylation, and the emerging biological importance of
balanced antagonistic kinase/phosphatase pairs, there is a surprising dearth of data concerning the
identity and regulation of pRB phosphatases.  Using a system based upon the yeast two-hybrid screen of
Fields and Song98, Durfee et al.81 identified and cloned a protein that directly interacted with pRB, and
was found to be the catalytic subunit of a type I protein phosphatase complex (PP1), PP1CA2.  Through
pRB immunoprecipitation of extracts of human cells at intervals after release from density-arrest, they
found that the association of PP1CA2 with pRB was cell-cyclical, occurring in G1, diminishing
throughout S and G2, and returning in M-phase.  By gel-mobility shift, PP1CA2 was inferred to bind the
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hypophosphorylated form of pRB, although binding to phosphorylated pRB was not ruled out.  Ludlow
et al.238 239 have pursued the timing of dephosphorylation and found that it progresses sequentially.

The mode of physical interaction between pRB and PP1 has not been determined unequivocally.  Several
authors81 369 have suggested that the LXSXE sequences present imply association via the small A/B
pocket, and therefore in competition with, and susceptible to the same regulation as, carriers of the
LXCXE motif.  Such an interaction is difficult to reconcile with the ability of PP1CA2 to bind a pRB
construct that lacks the entire B domain, but the inability to bind one lacking only the region C-terminal
to this81.  More recent work has provided strong evidence that it is in fact the C-terminal region of pRB
that associates with PP1, and in so doing, non-competitively inhibits its phosphatase function368.  This
does not necessarily preclude the involvement of LXSXE, or the overlapping DLXXXE, in this interaction
{Table 3}, or that there may also be some affinity between PP1 and the small A/B pocket.  It has been
established that, as with other pRB-interacting proteins, the binding of PP1 is regulated by the
phosphorylation state of pRB, specifically, that phosphorylation of S249, T373, S811, T821, or T826

prevents association at the C-terminus, while that of S608, S612, S780, or S807 does not369 {Table 5}.

On initial consideration, it appears paradoxical that an enzyme should be inhibited by its principal
substrate: how could it ever function?  Further reflection in the context of cyclical control of pRB
phosphorylation, yields an attractive explanation for this.  With PP1 bound to pRB and inhibited, any
newly activated pRB kinase can phosphorylate pRB unopposed.  In so doing, it may cause the release of
proteins bound to pRB, with potentially far-reaching effect.  In some cases, the particular pRB molecule
that is phosphorylated may have been sequestering PP1, and this too would be released and
disinhibited.  If the kinase phosphorylated sites that also prevented re-association of PP1 with pRB, then
it would be free to oppose the kinase and dephosphorylate pRB.  This in turn may render pRB once
again able to bind and inhibit PP1, completing the cycle.  The net result of these interactions is to provide
a limited period during which a variety of pRB regulated enzymes may be activated.  This is consistent
with the observed cell-cyclical nature of the pRB–PP1 association.  In addition to being attractive from a
mechanistic viewpoint, such a scenario also explains the otherwise problematic observation that despite
inhibition of PP1 by pRB, the former is able to dephosphorylate the latter in vitro.  The sequence of
events would be that phosphorylated pRB, unable to bind and inhibit PP1, is dephosphorylated by it,
whereupon it immediately proceeds to bind and inhibit it.

pRB acetylation
Chan43 et al. have established that pRB is also the subject of cell-cycle synchronised acetylation, and that
this materially affects pRB function by hindering phosphorylation by CDKs and enhancing its affinity for
MDM2.  The ramifications of this novel aspect of pRB regulation remain to be explored.
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S/T Phosphorylation Dephosphorylation Relevance of phosphorylation
T5 In vivo phosphorylation not reported

S230 In vivo phosphorylation not reported

S249

Inaccessible when LXCXE bound424

Phosphorylated by cyclin-
D1–CDK4, but may require prior
T826 phosphorylation424

Begins at M; complete by M+60
min§319

Dephosphorylated in response to
TGFβ1159

May prevent PP1α binding369

T252

Inaccessible when LXCXE bound424

Phosphorylated by cyclin-
D1–CDK4, but may require prior
T826 phosphorylation424

Begins at M; complete by M+60
min§319

Dephosphorylated in response to
TGFβ1159

No data available

T356

Phosphorylated by cyclin-
D1–CDK4424

Not phosphorylated by cyclin-
A–CDK2424

Begins at M; complete by M+60
min§319 Likely to affect pRB conformation78

T373

Phosphorylated by cyclin-
D1–CDK4424

Begins at M+30 min; complete by
G1

§319

Begins at M; complete by M+30
min§319

Dephosphorylated in response to
TGFβ1159

May prevent PP1α binding369

S567 No in vivo phosphorylation reported, but suggested based on in vitro data136.  Not solvent accessible225.
Mutation prevents pRB-mediated growth arrest and affects protein binding and phosphorylation374.

S608

Phosphorylated by cyclin-
D1–CDK4 and cyclin-A–CDK2,
but not cyclin-E–CDK2424

Increases during M-phase, peaks at
M+30 min§319

Begins after M+30 min369

Complete after M+4 h§319, that is,
in G1

Probably prevents E2F binding201

S612
Phosphorylated by cyclin-
A/E–CDK2 but not cyclin-
D1–CDK4424

No data available Probably prevents E2F binding201

S780

Phosphorylated by cyclin-
D1–CDK4 but not cyclin-
E–CDK2197

Increases during M-phase369

Peaks at M+30 min§319

Begins after M+30 min ; complete
after M+6 h§319, that is, in G1

Dephosphorylated in response to
TGFβ1159

Probably prevents E2F binding197 201

S788 Phosphorylated by cyclin-
D1–CDK4424

Begins at M; complete by M+ 60
min§319 Probably prevents E2F binding201

S795

Phosphorylated by cyclin-
D1–CDK4 and cyclin-
A/E–CDK2424

Inaccessible when LXCXE bound424

Begins at M+30 min; complete by
G1

§319

Begins at M; complete by M+30
min§319 Probably prevents E2F binding201

S807
Inaccessible when LXCXE bound424

Phosphorylation increases during
early M-phase369

Begins at M; complete by M+40
min§319

Dephosphorylated in response to
TGFβ1159

Likely to affect pRB conformation78

Facilitates further pRB
phosphorylation78

Probably prevents E2F binding201

Causes dissociation of pRB–ABL
complex200

S811 Phosphorylated by cyclin-
D1–CDK4424

Dephosphorylated in response to
TGFβ1159

Likely to affect pRB conformation78

Facilitates further pRB
phosphorylation78

Probably prevents E2F binding201

Causes dissociation of pRB–ABL
complex200

May prevent PP1α binding369

T821

Phosphorylated by cyclin-
A/E–CDK2 but not cyclin-
D1–CDK4424

Increases from soon after M-phase
onset, by M+ 40 min§319

Never fully dephosphorylated§319

May not be a target of PP1
isoforms§319

Rapid, partial dephosphorylation
begins at M§319

Second partial dephosphorylation
begins at M+40 min§319

Likely to affect pRB conformation78

Probably424 prevents LXCXE
binding, but some doubt exists§319

May prevent PP1α binding369

May dissociate preformed
pRB–LXCXE424

T826

Inaccessible when LXCXE bound424

Phosphorylated by cyclin-
D1–CDK4 but not cyclin-
A/E–CDK2424

Begins at M-phase onset; complete
by M+10 min§319

Preferentially targeted by PP1δ369

Prevents LXCXE binding424

May prevent PP1α binding369

Does not dissociate existing
pRB–LXCXE424

Prerequisite for S249 and T252
phosphorylation424

M = time of release of green monkey kidney fibroblast cells from nocodazole inhibition§319.

Table 5: pRB phosphorylation summary



The pRB subsystem

The pRB subsystem–12

4 Phosphorylation-dependent regulation of proliferation by pRB
A minimal proof
That pRB could influence the progression through the cell division cycle was unambiguously
demonstrated by Goodrich et al., who injected purified pRB into proliferating cells and discovered that it
prevented passage into S phase from G1

124.  This effect could be overcome by the simultaneous
expression of cyclin-A or cyclin-E151, suggesting that it was phosphorylation of pRB by a CDK that was
critical, a possibility supported by the increased phosphorylation of pRB seen in this experiment.  Co-
expression of E2F1 was also able to overcome the G1 arrest, and do so without influencing pRB
phosphorylation180, establishing that E2F1 acted either downstream, or independently of pRB.  The
former appeared the more likely as E2F1 was known to bind pRB and thereby be functionally
inhibited101.  Further support came from the finding that E2F1 bound unphosphorylated pRB, but not
that phosphorylated by cyclin-A–CDK2, cyclin-E–CDK2 or cyclin-D1–CDK4363.  The final link necessary
to connect pRB with entry into S-phase, and therefore control of cellular proliferation, is provided by the
preponderance of genes among the transcriptional targets of E2F1 whose encoded proteins are critical to
this progression.  Among these proteins are DNA pol-α, TS, PCNA, cyclin-E, cyclin-A, and CDC259.
Therefore, it can reasonably be concluded that the phosphorylation-dependent release of E2F1 from pRB
inhibition regulates progression from G1 to S phase.  As a corollary, whatever influences the
phosphorylation status of pRB is likely to influence progression through the cell-cycle58.

A model scenario
Caveat lector
The enormous complexity of pRB interactions defies exposition in any readily assimilable manner.
Nevertheless, a ‘thought experiment’ involving a model system, wherein cells arrested in G1 by virtue of
an absence of mitogens are stimulated to proliferate, can provide a basis from which a possible sequence
of events can be deduced from experimental observations.  Of necessity, simplifying assumptions have
been made.  For each of the proteins cited, multiple close relatives with overlapping but distinct
characteristics exist, and their expression and interactions may vary with organism, cell-type, and
physiological context.  As a result, the scenario presented may be neither generally applicable, nor even
applicable in any particular case.

G1 arrest
When cells arrest in G1 for want of mitogenic stimulation, pRB is essentially unphosphorylated and
therefore competent to bind proteins via any of its interaction domains.  E2F1/2/3–DP1/2/3
transcription factors, able to associate via the pRB large A/B pocket are favoured candidates, and in this
way pRB is localised to the promoter of E2F-regulated genes.  The interaction between these molecules
involves the transactivation domain of E2F, and this is thought to contribute to gene repression.

This binding does not prevent pRB interacting with additional proteins through other domains.  There is
general agreement31 244 that pRB is able to recruit active HDAC1 to E2F, but opinion is divided over how
this occurs.  Much of the controversy centres on the putative binding of the HDAC1 IXCXE sequence to
the pRB small A/B pocket.  Magnaghi-Jaulin et al.244 found that deletion of this sequence strongly
decreased binding, as did the presence of a synthetic IXCXE peptide, while an LXCXE peptide was an
even better competitor.  Consistent with this, Dahiya et al.56 found that mutation of the pRB LXCXE
binding cleft prevented HDAC1 association.  Conversely, two groups have arrived at precisely the
opposite conclusion65 191.  The second area of controversy is over whether the interaction between pRB
and HDAC1 is direct or mediated by an additional protein.  The results of Magnaghi-Jaulin et al.244
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support the notion of a direct interaction between the two, involving the A/B pocket, but not the C-
terminal region of pRB.  Others have proposed a matchmaking role for RBBP1213 or RBBP4191.  These
apparently contradictory results are perhaps most easily reconciled by assuming that all of these
interaction modes occur, and that differences in experimental conditions are responsible for the
discordant results.

However HDAC1 binds pRB, it does so coincidently with pRB dephosphorylation308, being bound in
early G1.  At that time, it deacetylates amino-terminal lysine amino acids of nucleosomal core histones,
reinstating the positive charge there.  This is thought to enhance the affinity of the core for DNA, and
thereby deny access to the promoter by the transcriptional apparatus and thus repress the gene.  It is
released at the transition to S-phase308, coincident with the observed acetylation of histone H497 and
nucleosomal relaxation.

With many genes whose transcription is necessary for S-phase progression having E2F binding sites in
their promoters, unphosphorylated pRB, will cause cell-cycle arrest at this point.

Release from inhibition
Cyclin-D1 elevation
There is a low level of constitutive expression of CCND1 mediated through CREs in its promoter272, but
in the absence of mitogenic stimulus, cyclin-D1 is rapidly degraded via the ubiquitin-directed
proteasomal subsystem67 117, its half-life being of the order of ten minutes.  This situation changes
abruptly upon mitogen stimulation, when cyclin-D1 levels rise dramatically240.  Two mechanisms are
though to be involved in this elevation.

Firstly, the rate of transcription of CCND1 is increased.  While studies in a variety of cell-types have
uncovered elements of the signal transduction path leading to this activation, no overall pattern of
general applicability has yet emerged, and apparent contradictions exist.  The transcription factor MYC
directly induces cyclin-D230, and probably also cyclin-D1302, and consistent with this, the level of cyclin-
D1 expression closely parallels the activation of MYC.  The transcription factor LEF1 has also been
shown to contribute to CCND1 expression344.  Strongly implicated are proteins with homology to RAS.
RAS itself may initiate multiple independent molecular cascades leading to increased CCND1
transcription.  When activated by ectopic expression§99, or by PDGF291 stimulation, it can increase CCND1
transcription via MEK1, MAPK1, and ultimately SP1 sites272 in the promoter.  Additionally, it may
operate via MAPK3 and JUN, ultimately via an AP-1 promoter site8.  The role of the different MAPK
enzymes is not entirely clear as p38MAPK has been reported both to enhance CCND1 transcription via
ATF2 promoter sites in response to HGF stimulation314, but also to cause a reduction in this rate221.  Two
RAS homologues, Rac1§183 and Ral§143 have been shown to influence CCND1 transcription, apparently via
the NF-κB subsystem.

The second mechanism of cyclin-D1 elevation is the enhancement of protein stability, and here, members
of the PI3K family are involved.  In addition to possible activation by RAS, PI3K is also downstream of
G-protein-coupled membrane receptors331, providing a further link between extracellular conditions and
cyclin-D1 regulation.  However activated, PI3K, probably via AKT1120 or another protein kinase B, can
inhibit the GSK3β enzyme that is responsible for phosphorylation of cyclin-D1 T28667 which would
otherwise mark it for nuclear export12 and accelerated degradation68.  Without this proteolysis, the half-
life of cyclin-D1 rises to over one hour.



The pRB subsystem

The pRB subsystem–14

The mechanisms of enhanced cyclin-D1 expression are very complex, with multiple inter-links among
the RAS, MYC, MAPK, and PI3K subsystems, multiple binding sites in the promoter, and multiple
independent degradative pathways120 ®332.

CDK4 activation
With cyclin-D1 levels elevated, and its cellular disposition increasingly nuclear, the opportunity for
interaction with CDK4 increases.  With three provisos, this will enable the CDK4 kinase function.  Firstly,
the association of cyclin-D1 with CDK4 is dependent on a serum-inducible assembly factor251, possibly
p21297.  Secondly, CDK4 activity depends on its phosphorylation state, which in turn depends on the
relative activities of CAK and CDC25A, which is itself subject to upstream regulation.  Finally, complex
assembly and kinase activation are both subject to inhibition by CKIs, particularly p16CDKN2A and its
relatives, and this may be further influenced by gankyrin {See ‘Turnover of pRB’, above}.  Clearly, CDK4 is
at a major regulatory node.

Initial pRB phosphorylation
Cyclin-D1, in this case, with its attendant activated CDK4 partner, can bind pRB either via the latter’s
small A/B pocket and its own LXCXE motif, or via an additional C-terminal pRB domain {Table 3}.
Within the constraints of the model scenario being explored, only the second docking mode is available
since the small A/B pocket is hypothesised to be occupied by HDAC1 or its linking protein.  This has
important implications for the functional scope of CDK4 since when docking is via the pRB C-terminus,
S807 and S811 cannot be phosphorylated292.  Furthermore, a number of pRB CDK4 target sites are
inaccessible when a protein is occupying the B pocket424.  Phosphorylation at one of these, T826,
appears to be a prerequisite for subsequent phosphorylation at S249 and T252, possibly influencing the
regulation of N-terminal interacting proteins.  These phosphorylations cannot therefore proceed at this
time.  Of the thirteen in vivo phosphorylation targets within pRB, given the substrate specificities, pRB
conformation and steric constraints, the immediate CDK4 targets available in the model scenario are
T356, T373, S608, S780, and S788.

Persistence of small A/B pocket interactions
These initial phosphorylations do not appear to suffice to cause the general dissociation of proteins
interacting with pRB via the small A/B pocket as phosphorylation of T821 may be essential for this, and
it is not a substrate for CDK4424.  While T826 is a potential CDK4 target, phosphorylation here may not
cause dissociation of existing complexes, even if it can prevent their formation424.  This may be moot in
this instance since T826 appears to be inaccessible when any protein is occupying the B pocket, as is
assumed here.  Hence, proteins interacting with pRB via their LXCXE motif and the small A/B pocket are

immune to eviction by cyclin-D1–CDK4.

The situation is less clear with respect to HDAC1, as the mode of its attachment is uncertain.  It has been
suggested by Harbour et al.136 that phosphorylation of pRB by CDK4 is sufficient to cause dissociation of
pRB-HDAC1 complexes, but some doubt exists over this.  Certainly, in co-transfection experiments they
were able to establish that the ability of HDAC1 to bind via the pRB small A/B pocket is disrupted in the
presence of cyclin-D2.  Simultaneously, they found that a co-expressed pRB C-terminal fragment became
phosphorylated, and that irrespective of its phosphorylation state, it was able to bind the pRB small A/B
pocket, even when HDAC1 could not.  However, their conclusion that the C-terminal domain is involved
in inhibiting binding of HDAC1 is questionable.  They appear to have given no consideration to the
ability of co-expressed cyclin-D2 to interact directly with the small A/B pocket via its LXCXE motif.
Within the context of a co-transfection, expressed cyclin-D2 could simply have out-competed HDAC1 or
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its linking protein for binding.  Nor did they address the possibility that cyclin-D2-dependent
phosphorylation of the small A/B pocket itself may have inhibited HDAC1 binding.  Unfortunately,
based on this report, the suggestion that cyclin-D–CDK4 can displace HDAC1 from pRB has entered the
literature and been adopted369.

Transcriptional activation
Notwithstanding this uncertainty, a mechanism exists whereby HDAC1 can be removed from the
proximity of the promoter in consequence of CDK4 phosphorylation.  It depends not on the severance of
the link between pRB and HDAC1, but on that between pRB–HDAC1 and E2F.  Phosphorylation at
S608, S780, or S788 is sufficient to prevent binding of E2F to pRB201, and while there appear to have
been no definitive studies, it is assumed to suffice to dissociate existing complexes.  If so, an early
consequence of CDK4 activation will be the detachment of pRB, with its attendant histone deacetylase
complex, from the promoter-bound E2F transcription factor.  With the local deacetylase concentration
reduced, acetylation of the core histones becomes possible, and with it, a loosening of the nucleosomal
structure and the granting of access for the transcription apparatus to the E2F-regulated gene.  This
process has been reported recently in some detail by Morrison et al. with respect to the gene for cyclin-
E1§264.

Interestingly, TAF1, a component of the RNA polymerase II complex with serine kinase69, histone
acetyltransferase258, and ubiquitin ligase capacity§303, also binds pRB via the large A/B pocket, resulting
in the inhibition of its kinase, but not its acetyltransferase function346.  While it has not been established
experimentally, the apparent coincidence of pRB domains mediating E2F and TAF1 interaction suggests
that TAF1 may also be evicted from pRB complexes by activated CDK4.  This would be consistent with
the reported ability of cyclin-D1 to bind TAF1 independently of pRB and prevent the inhibition of its
kinase function by the latter347.  This interaction may also affect transcription from promoters containing
SP1 binding sites5.  This modulation of TAF1 function may well influence RNA polymerase II
transcriptional rate or specificity at exactly the time when such a control is required: the onset of S-
phase®398.

Following the de-repression of E2F-regulated genes, many of which encode proteins essential for the
synthesis and repair of DNA305, there follows a period of active transcription and protein synthesis in
preparation for S-phase.  It is at some point during this period that entry into S-phase becomes
inevitable.

Passage through the restriction point into S-phase
The term ‘restriction point’ was coined by Arthur B. Pardee294 to describe:

…a single switching point in G1 … that regulates the reentry [sic] of a cell into a
new round of the cell cycle.

Proceedings of the National Academy of Sciences of the USA, 71:1286–90, 1974

Factors that cells may encounter in vivo, such as ‘high cell density, nutrient or serum insufficiency, or
high cAMP [levels]’ would cause an arrest at this point, while ‘non-physiological agents such as
hydroxyurea or colchicine’ would not.  The reference to cAMP as a cause of arrest in its own right reveals
that its role in signal transduction was then unrecognised.  The principle that Pardee wished to establish
was that stimuli of diverse origins converged at a unique, crucial, biochemical decision point.  If passed,
a cell would be committed to continuing through the cell-cycle.
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For a time, it was thought that passage beyond this point signified a commitment to execute a complete
cellular division, and that it was the only physiological determinant of this progression.  This has proven
not to be the case, nor was it ever suggested by Pardee, who proposed only that it controlled re-entry to
the cycle.  The restriction point must be considered only as a point of commitment to enter S-phase, but
this is still a very significant function that is now recognised to contribute not only to the integration of
extracellular growth signals, but also to purely internal signals, particularly those related to
differentiation and senescence.  From this definition, it is reasonable to conclude that it is the de-
repression of E2F that is the crucial step that constitutes this transition.  CDK4-sponsored release of E2F
from pRB may be an initial step, but it does not suffice.  As described, phosphorylation of pRB by CDK4
may lead to the release and disinhibition of PP1, an antagonistic phosphatase, and the phosphorylation
state of pRB becomes dependent on which of the two predominates.  If mitogen stimulation continues,
cyclin-D continues to be elevated, and CDK4 remains active.  If mitogen stimulation abates, or a CDK4
inhibitor is induced, the phosphatase will prevail and E2F will be again sequestered.  To this point, the
process remains reversible, and the restriction point has not been passed.

Under these conditions, there will be some transcription of E2F targets, although this may be
intermittent.  Among these is CCNE1, the gene for one isoform of cyclin-E115.  CCNE2, the second cyclin-E
gene may also be under E2F regulation, but this has not yet been established conclusively§116.  In time,
with continuing CDK4-dependent partial activation of E2F, production of cyclin-E will outpace its
degradation, and activated CDK2 will enter the equation.  Two properties of cyclin-E–CDK2 are of note
at this point.  Firstly, it is not subject to inhibition by a major class of CDK4 inhibitors, the p16-related
CKIs.  Thus, if activation of CDK4 had been being constrained by the presence of such inhibitors, but still
had managed to rise to a level sufficient to allow the accumulation of cyclin-E, the inhibitors
immediately lose any ability to constrain further progression.  The second salient feature is that
activation of CDK2 by ectopic expression of cyclin-E is sufficient to promote S-phase entry, and, most
importantly, do so even in the presence of a non-phosphorylatable form of pRB241.  The inference
therefore is that the only critical target of E2F may be cyclin-E.  The production of other proteins from
E2F-regulated genes may be rate-limiting for DNA synthesis, but it seems that even constitutive levels of
expression are sufficient to allow its commencement.

While immune to inhibition by p16-related CKIs, CDK2 is subject to regulation by p21-related CKIs, in
particular, p27.  Cyclin-D1–CDK4 also binds and is inhibited by p27380, and an interesting dynamism
exists in the inter-relationships among p16, p27, cyclin-E–CDK2, and cyclin-D1–CDK4.  When p16-
related inhibitors are absent, whatever p27 is present in the cell will bind cyclin-D1–CDK4 as it is
produced, delaying the onset of pRB phosphorylation.  However, once it starts, and cyclin-E–CDK2
begins to accumulate, it will do so in the absence of competition from p27.  Furthermore, p27 is itself a
CDK2 substrate, and when phosphorylated, becomes the subject of ubiquitin-directed proteolysis389,
further enhancing CDK2 activity.  Conversely, if p16-related inhibitors are present, such p27 as exists is
free to inhibit the low levels of activated CDK2 that may be produced under these circumstances, and
thus forestall the self-reinforcing accumulation of CDK2.  The apparent induction of p16 upon pRB
phosphorylation would contribute to this232.

While the critical CDK2 target has not been identified, a strong candidate is CDC6, a component of the
DNA replication licensing subsystem.  CDC6 is an excellent in vitro substrate for cyclin-E–CDK2, with
the same pattern of phosphorylation as is seen in vivo, and this phosphorylation is required for the
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initiation of DNA synthesis178.  In serum-deprived cells, ectopically expressed CDC6, in conjunction with
cyclin-E–CDK2, but not cyclin-A–CDK2, results in the commencement of DNA replication§53.

Further pRB phosphorylation
Within the model scenario under consideration, the activation of CDK2 assures entry into S-phase, and
synchronisation with the centrosomal division cycle.  If these functions were considered insufficiently
noteworthy, it has yet another role: further phosphorylation of pRB, probably mediated via the pRB C-
terminal KXLKXL sequence4.  Immediate CDK2 targets include S612 and T821.  The significance of the
first is unknown, but the second is thought to bring about a conformation change78 that reduces the
affinity of the small A/B pocket for LXCXE-bearing proteins, and probably causes dissociation of such
complexes424.  With their departure, other sites previously masked from the cyclin-D1–CDK4 complex
docked at the C-terminus become available including S795, also a target of CDK2, and T826.
Phosphorylation at the latter then renders S249 and T252 available to cyclin-D1–CDK4424.  In the final
step, cyclin-D1–CDK4 complexes can now dock via the vacant small A/B pocket, even if only transiently,
and effect the phosphorylation of S807 and S811, inaccessible from the C-terminus.  In consequence of
these alterations, ABL is released and disinhibited whereupon it is thought to take part in the monitoring
of genomic integrity in conjunction with ATM and p53194.  There is a functional parallel here with the
simultaneous induction of ARF by E2F1 resulting in increased levels of p53.

Phosphorylation at all of the sites where it is seen in vivo has now been completed.  Interestingly, it
occurred in five stages, the same as the number of major pRB electrophoretic species discernible in
Western blots of asynchronous populations78.  The functional consequences of these final
phosphorylations have yet to be fully explored, and given the very large number of proteins that interact
with pRB, this will be no small feat.

Maintenance of pRB phosphorylation
The reign of cyclin-E–CDK2 is relatively short-lived.  By activating CDK2, cyclin-E has been the author of
its own demise since its phosphorylation at T380 by CDK2 results in its degradation via ubiquitin-
directed proteolysis408.  The preferred model has it that this phosphorylation causes the dissociation of
cyclin-E from CDK2, rendering it subject to the ubiquitin-ligase function of CUL3350.  Nevertheless,
phosphorylation of pRB can be maintained as rising cyclin-A, another E2F1 target, continues to activate
CDK2.

Dephosphorylation of pRB
This too comes to an end in metaphase, when cyclin-A also becomes a target of proteasomal degradation,
here at the instigation of the cyclosome.  Only then does the driving force behind pRB phosphorylation
abate sufficiently to allow the opposing phosphatase any opportunity to reverse the process.  Like its
phosphorylation, the dephosphorylation of pRB is synchronised with the cell-cycle and appears to be
incremental§319.

Variations on the theme
Continuous cycling
The extent of dephosphorylation depends in large measure on the cellular context at the time.  In
particular, if mitogens are still present and p16-related inhibitors absent, cyclin-D1–CDK4 will still be
active, although RAS stimulation of CCND1 may only be operative in G2

§153.  Not only will this prevent
complete dephosphorylation of pRB by antagonising PP1 activity, it may modify PP1 directly through
phosphorylation197.  In any case, cyclin-D1–CDK4 can only oppose PP1 with respect to sites that are
substrates for both.  Thus, the initial dephosphorylation may be limited to S612 and T821.  However,
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transient dephosphorylation of T826 may occur, and during the period when both T821 and T826 are
dephosphorylated, pRB again has the capacity to interact via the small A/B pocket.  Subsequent re-
phosphorylation of T826 by cyclin-D1–CDK4 may be insufficient to dissociate such a newly formed
complex.  One consequence of this that S249 and T252 may also be subject to dephosphorylation as
access by cyclin-D1–CDK4 here depends on prior T826 phosphorylation and is hindered by B-pocket
occupancy, unless, presumably, the occupant is cyclin-D1 itself.  This raises a further distinction between
the situation that pertains in cells released from mitogen deprivation and those cycling continuously.  In
the latter case, this mode of docking is available to cyclin-D1, whereas in the former, it is denied access
by the presence of HDAC1 or its linking protein.  Now, the tables are turned, and cyclin-D1 is in the
position to prevent the recruitment of the deacetylase complex.  In addition, S807 and S811 will be
subject to phosphorylation, albeit transiently, and can partially impede re-sequestration of ABL.  Finally,
the continuing phosphorylation of S795 probably suffices to prevent re-association between pRB and

E2F.

In all probability then, in the continuing presence of mitogenic stimulation, all of the recognised means
by which pRB constrains proliferation are disabled.  This does not imply that such cells can cycle freely.
Requirements of chromatin decondensation, E2F production, CDK2 activation, and DNA replication
licensing must still be met.  A change in cyclin-D1 status before the next passage through the restriction
point would alter the situation markedly.

Inhibitory cytokines
Inhibitory cytokines have the capacity to prevent cellular proliferation even in the presence of mitogens.
One of the better studied and understood of these is TGFβ, a potent inhibitor of epithelial cell division.  It
has been found to operate through several signal transduction channels including SMAD®177, MAPK158,
and PI3K17 subsystems, and several mechanisms of engendering cell-cycle arrest in G1 have been
identified.  It depresses MYC transcription414 and possibly via this, reduces cyclin-D1 expression203 and
induces p15CDKN2B333, an inhibitor of CDK4; it induces p21CDKN1A293, an inhibitor of CDK2; it decreases the
activity of both CDC25A164 165 and CAK271, contributing to the inactivation of existing CDKs; and it may
interfere with the translation of CDK4 mRNA257.  These results suggest very strongly that modulation of
the pRB subsystem is an important component of the growth inhibitory effect of TGFβ.

Cellular senescence
Observations by Leonard Hayflick155 ®339 revealed that cultured human fibroblasts could sustain only a
limited number of population doublings prior to undergoing a phenotypic change and ceasing to
proliferate.  In contrast, cultures derived from tumours appeared to be immortal.  This established as the
norm the concept of cellular, or replicative, senescence, an inherent proliferative limitation, and its defeat
as a feature of neoplastic transformation.  Its existence implies a cellular memory that survives mitosis,
but the molecular basis of this memory is still a subject of experiment and debate.

An extremely attractive candidate mechanism involves the maintenance of the distinctive base sequences
found at the termini of chromosomal DNA, known as telomeres®359.  The normal process of DNA
replication cannot access these final bases since new bases are appended at the trailing edge of the
polymerase as it proceeds along the template strand.  When it reaches the terminus and dissociates, the
single-stranded sequence to which it had been binding must remain unreplicated.  This is a progressive
process, and in most tissues, telomeres are seen to shorten with each round of DNA synthesis11.  In some
tissues however, the enzyme telomerase is expressed that has the capacity to concatenate telomere
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sequences onto these termini using an inherent RNA template; it is, therefore, a reverse-transcriptase, the
first found in eukaryotes.  Such tissues include the germ-line and those with an extremely high cellular
turnover rate, such as haematopoietic cells and cells of the intestinal lining.  Aberrant expression of
telomerase is also a feature of cancer cells154.  An alternative explanation of this cellular memory may
involve the simple mechanism of gradual accumulation of a regulatory protein due to a slight bias in
favour of expression over degradation118.  It is also entirely possible, and suggested by many181 270, that
several independent mechanisms of replicative senescence exist, and that the relative importance of
these may differ among cell-types.

While the details of replicative senescence remain elusive, a number of critical elements have been
characterised.  These include the telomerase reverse-transcriptase, TERT66, ATM253, p5327, CDC25A324,
CDK4313, p1679, p21327, p2710, and pRB199.  There is thus very strong circumstantial evidence that
modulation of pRB subsystem activity, probably through altered phosphorylation, is involved in the
regulation of senescence.

Viral infection
Viruses are able to carry out their vital and defining functions utilising a genome of tens of genes, in
stark contrast to all other classes of organism, where thousands to hundreds of thousands are more
usual.  They are able to do so by usurping cellular regulation and perverting the host cell metabolism to
their own ends.  It is therefore of great interest that in many DNA and retroviruses, a large proportion of
the reduced viral genome is dedicated to the nullification of the pRB subsystem.  Typically, this is
achieved by carrying a gene that encodes a protein that binds to the pRB small A/B pocket via an LXCXE
motif.  This is often portrayed as a means of defeating the pRB-dependent constraint on cellular
proliferation, but there is no reason why this should be required for viral infection to proceed, nor is it
sufficient to achieve this.  To do so would require that the binding of a viral protein to pRB interfered
with the constraint of E2F activity.  This is not the case, however, as it is insufficient to disrupt pRB-E2F
complexes422 and furthermore, the ability of pRB to bind such proteins and to impose a cell-cycle arrest
are functionally separable44 65.

What then is the function served, from the viewpoint of the virus, or defeated, from the viewpoint of the
cell, by such binding?  By binding in the small A/B pocket, a viral protein will prevent the recruitment of
the histone deacetylase complex to gene promoters and so diminish the ability of pRB to repress
transcription of genes used in the synthesis of DNA, something beneficial to the virus.  When bound
there, it will also deny this docking mode to cyclin-D1, and thereby prevent phosphorylation of S807
and S811, as these are not accessible from the C-terminal docking domain424.  In consequence, ABL will
not dissociate from pRB200 and it will remain inhibited402.  One substrate of the ABL kinase is MDM2, and
its phosphorylation prevents it binding to, and directing the degradation of p53121.  Therefore, on-going
inhibition of ABL by pRB may contribute to the suppression of the p53-dependent apoptotic response
that could otherwise be triggered during the infection of mitogen-stimulated cells.  ABL can also
promote apoptosis via p73®394, and this effect is also nullified by the continuing association of ABL with
pRB.  While the suppression of apoptosis may be required in order to give the infecting virus the
opportunity to replicate, this interpretation is difficult to reconcile with the general observation that
expression of a viral pRB-binding protein such as E7361, E1A375, or large-T52, promotes rather than inhibits
apoptosis, especially where p53 is not disabled by an additional viral protein375.



The pRB subsystem

The pRB subsystem–20

Complications
As noted above, the model scenario presented incorporates many simplifying assumptions, particularly
regarding the multiplicity of related proteins of each type involved.  At last count, there are three pRB-
related pocket proteins®49 ®360, six E2F transcription factors®382 that may dimerise with one of three DP co-
factors®418, three D-cyclins®342, two E-cyclins298 ®325, two A-cyclins®26 ®64, perhaps four CDKs implicated in
G1–S transition regulation®142, four CKIs related to p16®318 ®378, and three related to p21®277.  This
discussion could not be complete without some indication of the distinctions among these.

Generally, depending on their lineage, cells express cyclin-D2 and either cyclin-D1 or cyclin-D3.  All
contain the LXCXE motif {Table 3} and all are thought to bind pRB.  All can bind CDK2, CDK4, and
CDK6, and all can activate them, except in the case of cyclin-D1–CDK2148.  This may well account for the
biphasic response seen with ectopic expression of cyclin-D1, wherein a small increment of expression
accelerates S-phase entry, but a larger increment causes a G1 arrest.  In the first instance, increased CDK4
activity would cause the acceleration, but when the available CDK4 is saturated, additional cyclin-D1
would act as a competitive inhibitor of CDK2109, preventing its activation by cyclin-E.

E2F1, -2, and -3 associate with pRB, rather than p107 or p130; have an N-terminal domain that binds
cyclin-A, but not cyclin-E, that is essential for phosphorylation of the DP co-factor; and are exclusively
nuclear.  E2F4 and -5 associate with p107 and, particularly so in the case of E2F5, p130.  An association
between E2F4 and pRB has also been reported commencing at the G1–S transition259 and in the growth-
suppressive response to TGFβ231.  E2F4 is the predominant form found in quiescent cells, when it is
essentially nuclear, this localisation depending on DP2, and p107 or p130, but not pRB.  As cells
approach S-phase, it becomes increasingly cytoplasmic235, and when engineered to remain nuclear, is
functionally indistinguishable from E2F1269.  E2F6 has no transactivation domain or pocket-protein-
binding domain and may be a natural inhibitor of the other E2Fs36.

The CKI p15CDKN2B has a more polarised tissue-dependent expression than p16, being present at high
levels in lung, but scarce or absent in kidney.  Also unlike p16, its expression is not regulated by pRB, nor
is its mRNA level different in proliferating versus quiescent cells, but it does increase some thirty-fold in
response to TGFβ treatment of epithelial cells133.  Like CDKN2A, it has been reported to be subject to
transcriptional silencing through promoter methylation146.  The p18CDKN2C inhibitor has greatest
expression in skeletal muscle, and may378 be a better inhibitor of CDK6 than of CDK4130 282.  The p19CDKN2D

inhibitor has expression linked to the cell-cycle that peaks at the G1–S transition and then declines until
mitosis.

Protein levels of the pRB-relatives, p107 and p130 vary cell-cyclically, and at least in the case of p130, this
is due to alteration of protein translation or stability as the mRNA level stays essentially constant.
Interestingly, their patterns of expression are mutually inverted.  Levels of p107 are low in quiescent cells
as a consequence of repression via E2F4, and rise during G1, while those of p130 are high in quiescent
cells and low during proliferation351.  Both are subject to cell-cyclical phosphorylation, and while both are
substrates for CDK4, neither is a substrate for CDK223.  Indeed, they are either inhibitors of CDK238 410, or
influence its substrate specificity139.  Consistent with this, phosphorylation of both begins in mid-G1

coincidently with CDK4 activation412.  In the case of p130, this proceeds rapidly and completes before
that of pRB252.
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5 The pRB subsystem and cancer
The pRB-related pocket proteins
While homozygous mutant Rb1 mice die in utero with severe developmental flaws, the corresponding
heterozygotes are viable, but spontaneously develop pituitary tumours§157.  In the analogous human
situation, it is of course predisposition to retinoblastoma that is seen.  It is widely reported that despite
having been cured of their initial tumour, survivors of hereditary retinoblastoma are at increased risk of
developing second and subsequent primary tumours2 3 63 75 80 85 260 404, notably osteosarcoma134, and often
die during childhood or adolescence as a result.  While there may be an iatrogenic component to this, as
with increased bladder leiomyosarcoma after cyclophosphamide treatment190 266, the major effect is
thought to be due to the functional loss of pRB upon mutation of the intact allele in other tissues.  The
nature of subsequent primary tumours is probably a joint reflection of the vulnerability to mutation, and
the importance of the tumour-suppressor function of pRB in different tissues.  Among tumours other
than, or as sequelae of retinoblastoma, alterations of RB1 or expression of pRB are also widely reported,
instances being in breast carcinoma125, chodrosarcoma14, glioma140, small-cell lung cancer421, non-small-
cell lung cancer126, oesophageal squamous cell carcinoma187, pituitary adenoma349, hepatocellular
carcinoma163, osteosarcoma24, thymic carcinoma152, and head and neck squamous cell carcinoma215.  In
addition, aberrant over-expression of pRB has been reported in bladder carcinoma25 and hepatocellular
carcinoma163.

In contrast, the other members of the pRB-related pocket protein family appear to be less important in
tumour suppression.  Rbl1-null mice are viable, and are reported to be either phenotypically normal§226,
or growth-impaired and exhibiting myeloid hyperplasia§222.  A similar disparity exists for Rbl2-null mice,
with both apparent normality§51 and embryonic lethality§223 being reported.  It has been suggested that
the particular genetic backgrounds of the differing mouse strains used in these experiments may account
for this phenomenon.  Nevertheless, even in the more permissive C57BL/6 strain the double, Rbl1/Rbl2
homozygous knockout results in early neonatal death§51 ®§127, indicating that they may have overlapping
abilities to perform a function critical for survival.  Alterations affecting p130 have been reported in a few
human tumour types, including vulvar squamous cell carcinoma423, nasopharyngeal carcinoma50,
Burkitt’s lymphoma48, and small-cell lung cancer141.  Alterations affecting p107 appear to be very rare367.

The D-cyclins
The oncogenic potential of cyclin-D1 is well established®73, indeed it was the search for an 11q13
oncogene associated with BCL and parathyroid adenoma that led to its identification317.  In the case of
BCL, it was found that chromosomal translocation resulted in aberrant expression of cyclin-D1, not
normally produced by B or T lymphocytes.  Moderate over-expression has been reported in many
carcinomas including hepatocellular (58%)182, lung non-small-cell (37%)415, head and neck squamous cell
(48%)20, and those of the breast (35%)430, and bladder (31%)288.

Over-expression of cyclin-D2 has been reported in a number of myeloid malignancies61, sometimes as a
consequence of BCR–ABL activity60.  It is seen in male germ-cell tumours156; and in gastric cancer, it
correlates with progression, while over-expression of cyclin-D1 does not366.  Conversely, loss of
expression due to promoter methylation has been reported in breast carcinoma87.

Chromosomal translocations resulting in the aberrant expression of cyclin-D3 have been found in a
subset of multiple myeloma cell-lines and tumours338 and CCND3 has been found to be amplified in a
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glioblastoma209.  Over-expression has been reported in pancreatic adenocarcinoma174, non-Hodgkin’s
lymphoma262, and breast carcinoma21.

The cyclin-dependent kinases
There is no strong case to support a direct role for CDK2 in tumorigenesis, although some over-
expression and increased activity have been reported196 246 256.  While the same is true for CDK6216, the
corresponding case for CDK4 is very substantial.  A germ-line CDK4 R24C mutation that prevents
binding  and inhibition by p16 has been found in melanoma406, and mice engineered to be homozygous
for this allele spontaneously develop multiple tumours352, particularly invasive melanoma353.  A mutation
in the corresponding position in CDK6 has been sought, but not found340.  CDK4 is amplified in cervical
carcinoma47, osteosarcoma400, breast carcinoma13, glioblastoma316, and Ewing’s sarcoma212; and CDK4 is
over-expressed in oral and pharyngeal carcinoma206, glioblastoma216, cervical carcinoma47, breast
carcinoma13, hepatoblastoma195, and ovarian carcinoma248.

The cyclin-dependent kinase inhibitors
p16 and relatives
Three proteins structurally similar to p16CDKN2A and with overlapping function are known: p15CDKN2B,
p18CDKN2C, and p19CDKN2D.  Assessing the contributions toward tumour suppression of the closely-linked
9p21 genes CDKN2A and CDKN2B and their encoded proteins ARF, p16, p15, and its p10384 and p15.5113

splice variants is no simple task.  Co-deletion of the genes is commonly reported, as is simultaneous
transcriptional silencing due to methylation, but combined inactivation by different mechanisms is also
known.  In consequence, it is difficult to determine if only one, either, or both are the functional targets,
and what, if any, tissue specificity there may be among these alternatives.

CDKN2A is undoubtedly a tumour-suppressor gene of stature rivalling TP53.  It seems likely that the
two proteins it encodes, p16®104 and ARF, contribute independently toward this®341.  This is perhaps best
demonstrated by the phenotypes of mice engineered to be functionally deficient in each of these proteins
without compromise of the function of the other.  When ARF was selectively ablated, mice displayed a
cancer-prone phenotype, with spontaneous tumour development in 19 of 24 animals, the most common
type being sarcoma§186.  Similar results were seen for p16, with spontaneous tumour development in 10
of 39 homozygotes, with the predominant type being sarcoma, while lymphoma and melanoma were
also seen§336.  Interestingly, a melanoma kindred has been reported wherein two members are
homozygous for a non-functional CDKN2A allele: one has melanoma, the other is unaffected129.  Clearly,
while loss of p16 function may predispose toward the development of melanoma, it does not guarantee
it.  Other genetic or environmental factors must be involved.

In contrast, the Cdkn2b knockout mouse has a relatively mild phenotype, with an 8% tumour incidence
after 18 months§220.  Nevertheless, there is probably a sufficient weight of evidence to suggest that it is a
tumour-suppressor in its own right, albeit relatively minor.  In particular, homozygous deletion of
CDKN2B, but not CDKN2A has been reported in bladder cancer84, multiple myeloma372, and non-
Hodgkin’s lymphoma345; and methylation of CDKN2B, without alteration of p16 expression is almost
universal in adult acute myelogenous leukaemia, and very common in adult acute lymphocytic
leukaemia, paediatric acute myelogenous leukaemia, and in glioma145 146.  This same pattern is seen in
radiation-induced murine T-cell lymphomas§245.  Other data supports a joint role for these tumour-
suppressors.  Simultaneous functional loss of p15 and p16 may be important in the development of T-cell
acute lymphoblastic leukaemia172 287, glioma348, and multiple myeloma280.  In oesophageal squamous
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carcinoma, promoter methylation of CDKN2A is seen either alone, or in combination with methylation of
CDKN2B, but the latter rarely occurs alone413.

The p18Cdkn2c knockout mouse exhibited pituitary hyperplasia leading to the formation of primary
tumours that were fatal due to their large size.  They appeared to have little invasive or metastatic
propensity however.  Other tumour types were also seen, including lymphoma, and renal, adrenal and
testicular tumours§220.  There is evidence to support a tumour-suppressor function for p18 in humans,
particularly in multiple myeloma210, and perhaps acute lymphoblastic leukaemia171, meningioma29, and
breast cancer, where a CDKN2C mutation leading to a p18 unable to bind CDK6 has been reported217.

An extensive study of human haematopoietic malignancies found only very few instances of p19
alteration77, nor is it implicated in other tumour types.  The phenotype of the p19-deficient mouse
supports the hypothesis that it is not a tumour-suppressor, but rather, regulates testicular
development§429.

p21 and relatives
The initial report of the p21Cdkn1a-null mouse§62 concluded that while aberrations of G1-arrest were evident
in cell cultures, there was no significant disposition toward spontaneous tumour formation by six
months of age.  However, when such mice were followed for an extended period it was found that
spontaneous tumours did arise at a mean age of sixteen months, the predominant type being
haematopoietic§247.  Among human tumours, mutations of CDKN1A are known, but in general, are
infrequent376.  Among 81 gliomas233, 28 pituitary adenomas168, and 20 gastric carcinomas296, no mutation
was detected by PCR-SSCP or sequencing.  Intragenic deletions or point mutations have been found in
adrenocortical adenoma167, 5 of 40 thyroid carcinomas343, 3 of 28 brain tumours385, and 7 of 102 tumours
of assorted types399.  Interestingly, a polymorphism that may affect the ability of p21 to interact with
PCNA was identified in 42 of 50 cases of oesophageal squamous cell carcinomas in contrast to only 8 of
50 putatively normal individuals16.

The most evident characteristic of the p27Cdkn1b knockout mouse it that it is significantly larger than its
wild-type litter-mates, an apparent consequence of increased general cellular proliferation resulting in
enlarged organs§96 §276.  Spontaneous development of pituitary tumours is seen, a feature also present in
the phenotype of Cdkn2c-null§105 and Rb1+/- animals, suggesting an important functional overlap in this
tissue.  In human solid tumours, reduced expression of p27 is frequently associated with rapid tumour
progression and poor prognosis160 249 328, while the converse may be true in some lymphomas®261.
CDKN1B alterations are only rarely seen in tumours189, however a mutation with simultaneous loss of
heterozygosity at 12p13 has been found in 1 of 36 breast carcinomas356.

Mice lacking Cdkn1c had cleft palates and skeletal deformities and usually died neonatally.  In the ~10%
of instances where they survived beyond weaning, their growth was markedly retarded and
developmental flaws in reproductive organs become apparent in both males and females.  While no
increased cancer predisposition was detected during the five months of the study, increased incidence
with later onset cannot be excluded§365.  Mutation of CDKN1C has not been reported in human tumours,
but loss of expression and loss of heterozygosity at 11p15.5 has been seen in thyroid176, bladder289, and
hepatocellular173 carcinomas, and in pancreatic adenocarcinoma175.  CDKN1C is a strong candidate for the
Beckwith-Wiedemann syndrome gene37, a disease in which there is a mild predisposition toward cancer,
particularly Wilms’ tumour.  While mutation has been found in some cases138, conclusive proof is
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proving difficult to obtain, not least because the implicated locus also contains IGF2, an equally viable
candidate, and both are subject to parental imprinting179.

The E2F transcription factors
The E2F transcription factors are involved in both the induction and repression of genes, and mediate
both proliferation and apoptosis, hence, it is not possible to predict, a priori, whether their normal role is
tumour-suppressive, excessive function oncogenic, neither, or even both for different E2F types or under
different circumstances®416.  The very real nature of this difficulty is demonstrated by the case of E2F1,
one of the better studied E2Fs.  E2F1 is amplified in the HEL erythroleukaemia cell-line321, E2F1 was
over-expressed in 24 of 26 small-cell lung cancers90, and its expression correlated with invasiveness in
head and neck carcinoma426, all suggesting a role in tumorigenesis.  However, the E2f1-null mouse has an
elevated rate of spontaneous tumour formation, particularly reproductive tract sarcomas§419, suggesting a
role in tumour suppression.  How these effects come about is unknown, but it seems unlikely to involve
interaction with pRB since no mutations in the pRB interaction domain of E2F1 were found in a survey
of 406 human tumours274, and concurrent ablation of E2f1 reduces tumour incidence and increases the
longevity of Rb1 +/- heterozygous mice§417.

E2F4 appears to influence tumour development significantly, seemingly due to the presence of an
unstable (CAG)13–18 trinucleotide repeat that encodes a polyserine tract.  Alterations have been found here
in various digestive250 330 355 409 428 and haematological205 tumours.  It has been suggested that at least in
some instances, this instability is due to a mutation within MSH3, whose encoded protein plays a
prominent role in DNA mismatch repair169.

There is little if any evidence to suggest a role for the other E2F transcription factors in tumorigenesis,
with the possible exception of E2F5, which has been found to be amplified and over-expressed in some
breast cancers306.

6 The pRB subsystem and melanoma
The genetic analysis of hereditary tumour kindreds is a rich source of information pertinent to the
molecular aetiology of cancer, and this is the case with melanoma®32 ®39.  In some syndromes, melanoma
occurs as the only, first, or predominant tumour type, notably when the disease phenotype is linked to
9p21137 392, 12q14354, or 1p3618.  Here, the implicated genes are, respectively, CDKN2A100 312, CDK4431, and
possibly CDC2L1279 or even PINK1387, but probably not TP73207 329 383.  In others, melanoma is just one
component of a more complex cancer predisposition as in xeroderma pigmentosum204, with multiple
linkage groups; hereditary retinoblastoma9 22 260 381, implicating RB1; type I multiple endocrine
neoplasia283, implicating MEN1; multiple hamartoma syndrome, implicating PTEN42; and melanoma-
astrocytoma syndrome, implicating CDKN2A exon 1β312.  Among these, alterations in RB1, CDKN2A, and
CDK4 may be expected to affect the pRB subsystem directly®131.

Most interestingly, extensive surveys have failed to provide any evidence for a role for CDK2391 or
CDK6340 in the tumorigenesis of melanoma, and there appears to be no report of amplification or
mutation of CCNE1.  Deregulated phosphorylation of pRB, per se, may therefore be insufficient to
predispose toward melanoma.  This hints that the critical role for pRB is modulated by CDK4, but not
CDK2, and that it may be inconsequential in tissues where the dominant cyclin-D-associated CDK is
CDK6.  Heretical though it may seem, this is consistent with the possibility that the ability of pRB to
repress E2F activity may not be the critical aspect.  The disparity between incidences of CDK4 and
CDKN2A mutations in hereditary melanoma122 further suggests that there may be partial functional
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overlap between CDK4 and another kinase less susceptible to p16 inhibition, or that some function other
than inhibition of CDK4 may also be involved.

Hence, suspicion must fall upon ARF as a further, possibly subordinate, contributor to melanoma
tumorigenesis.  Fitzgerald et al. reported finding no CDKN2A mutations that would alter ARF, but not
p16, in 33 consecutive melanoma patients who had one or more first or second-degree affected
relations100, nor were any sequence alterations found in CDKN2A exon 1β among ten 9p21-linked
melanoma kindreds by Fargnoli et al.93.  However, one melanoma-astrocytoma syndrome kindred has
been reported in which there is a germ-line mutation in CDKN2A exon 1β.  More data are required before
a definitive assessment can be made of what role, if any, is played by ARF in the tumorigenesis of
melanoma.

The hypothesis has been raised that it is the integrity of the pRB subsystem as a functional whole that
protects against melanoma, and hence, failure of any critical component predisposes toward it.  The
strongest evidence to support this is the common finding that in melanomas, there is very often a
functional defect in a single element of the subsystem, generally p16, pRB, or CDK419 243 392.  Nevertheless,
multiple flaws have been found in individual cases, with amplification of CCND1 or mutation of CDK4
being seen in conjunction with CDKN2A deletion315 392.  Clearly, pRB cannot be the only significant target
of alterations affecting cyclin-D1 or CDK4, and some additional advantage is conferred by their presence.
The basis for this advantage is unknown, but the most probable explanation is that further, as yet
uncharacterised, substrates for cyclin-D1–CDK4 exist.  The rationale for this is that the implicated CDK4
mutation involves its escape from inhibition by p16.  For this to be significant in a cellular context where
p16 or pRB are absent, the necessity of a substrate other than pRB, and an inhibitor other than p16 is
implied.  Potentially, where p16 is absent, some degree of constraint may still operate through induction
of p15, unless CDK4 is impervious to this.  Furthermore, if the amplification of cyclin-D1 were serving
some purpose other than increasing CDK4 activity, then it could be expected to act as an inhibitor of
CDK2 activation, hindering, rather than helping proliferation.  As to the identity of such a substrate,
nothing is known with certainty.  There is one report of a cytoplasmic p88 CDK4 substrate211, but this
does not appear to have been confirmed.  It is also possible that it corresponds to a product of caspase
cleavage of pRB.  The cited report relies on the lack of recognition of p88 by the pRB monoclonal
antibody employed to exclude this, but it is quite possible that upon cleavage, the necessary epitope is
lost or its conformation modified.  The particular antibody is not defined sufficiently well in the report to
establish if this may be the case.  While the principal caspase degradation products of pRB are p44 and
p68, there is evidence of the early production of larger, and the subsequent production of smaller
products95.
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