Excerpted and adapted from the Ph.D thesis entitled:

Human metastatic melanoma in vitro

in which it appeared as Appendix H.

Geoffrey A. Charters

The Auckland Cancer Society Research Centre

The University of Auckland

New Zealand

2007

Symbols used:

[number]

Data from a non-human model, generality uncertain Reference thus tagged is a review article Reference to the correspondingly labelled part of the table or figure last cited in the text

Study of a rare hereditary paediatric cancer has led to the identification of pRB, a tumour-suppressor implicated in human cancer of many types. It plays a crucial role in embryogenesis, differentiation, cellular senescence, and proliferation. The manifold functions of pRB are mediated solely via interactions with over 100 proteins, both individually and in higher-order complexes. Its functions are modulated chiefly post-translationally, with regulated alterations in phosphorylation state being the best understood mechanism. Not surprisingly, many of the elements necessary for regulation of pRB function have themselves been implicated in tumour suppression or tumorigenesis, in particular, the cyclins, the CDKs, and the CKIs.

This article provides a general review of pRB structure, interaction, and regulation as a basis for a discussion of the mechanism by which pRB exerts control over cell-cycle progression. The relevance that this may have to tumorigenesis in general, and to melanoma in particular, is then addressed.

1 Retinoblastoma

Retinoblastoma is a paediatric intraocular tumour accounting for 5% of childhood blindness. It occurs as an inherited disease with autosomal dominant transmission²⁸ and 90% penetrance⁷⁶, in which tumours are usually bilateral and multifocal. Sporadic cases are also known, but these differ from the typical hereditary disease in that they are usually unilateral and unifocal, although a hereditary low-penetrance unifocal phenotype has been described⁵⁵. Several modes of treatment exist, including surgery and radiotherapy, and these are usually curative⁷⁰ and preserve vision. However, significant mortality still occurs after successful treatment of hereditary cases due to the increased incidence of subsequent primary tumours of various types.

Since rodents infected with adenovirus often developed retinoblastoma-like symptoms²⁶⁷²⁶⁸ it was thought that human retinoblastoma may have a similar cause, but no trace of the adenovirus genome could be found in cells from patients³⁶²³⁸⁶. A different interpretation began to emerge with the publication of a seminal paper by Knudson²⁰² that reported the results of a statistical analysis of retinoblastoma incidence. The clear inference to be drawn from the data was that retinoblastoma could develop after the occurrence of just two independent genetic events. In the case of the hereditary disease, one of these was presumed to be an inherited trait, while the second, and both in the case of the sporadic disease, were considered to be somatic changes. This is the 'two-hit' hypothesis. Although the two targets were not specifically identified in this work, given the diploid nature of the human genome, a reasonable working hypothesis was that a defect in only one gene was involved, with two events being required to disrupt both alleles. This was supported by loss-of-heterozygosity studies⁴¹.

2 The retinoblastoma susceptibility gene, *RB1*

Cytogenetic analysis of retinoblastoma tumours led to the discovery of a frequently deleted chromosomal region at 13q14, and linkage analysis within kindreds displaying hereditary disease led to the identification of closely linked microsatellite markers which co-segregated with the disease phenotype. These efforts ultimately resulted in the identification of a candidate retinoblastoma susceptibility gene, *RB1*^{106 227} and its authentication¹¹⁰.

Gene structure and transcriptional regulation

RB1 comprises 27 exons spanning over 200 kbp of genomic DNA^{28 371}, and is transcribed into an mRNA of 4.6kb length²²⁷. No splice-variants appear to exist in normal tissue, but aberrant splicing resulting in truncation or skipped exons does occur in tumours²³⁶.

The initial *RB1* promoter characterisation³⁷¹ was extended by Gill et al.¹¹⁹, who, by using a series of 5'deletion constructs, discovered that a region spanning nucleotides –215 to –179, relative to the initiating methionine codon, contains the major functional determinants of transcriptional regulation. They identified putative SP1, CREB/ATF, and E2F binding sites, together with a potential hormone-response element. Surprisingly, the protein that they found to associate with the SP1 site was not SP1, but another protein they dubbed 'RBF-1'. Further work established that it is the GA-binding protein component of the E4TF1 Ets-family transcription factor complex that binds to this site³²⁶. Mutation at this⁵⁵, or the CREB/ATF site³²² is associated with a mild, low-penetrance hereditary retinoblastoma phenotype.

A CpG island extends from the promoter into exon one³⁷⁹ and there is evidence that this can be methylated, preventing binding of E4TF1 and ATF/CREB and causing a 92% reduction in transcription rate²⁸⁵. Transcriptional silencing due to promoter methylation coupled with deletion or mutation of the alternate allele has been causally linked to over 9% of unilateral sporadic retinoblastomas^{128 284 285}, and has been reported in oligodendroglial⁷² tumours and glioblastoma²⁷³.

There is a consensus that pRB contributes to transcriptional regulation of its own gene, but there is less accord over the nature of this. Some opine that E2F transcription factors, regulated by pRB, function as repressors^{132 286 334}, but others have established that the E2F binding site is dispensable for auto-repression¹¹⁹. Positive auto-regulation via the ATF/CREB site has also been reported²⁹⁵.

3 The retinoblastoma-associated protein, pRB

Significance

Perhaps the best gauge of the importance of a protein is the consequence of its absence, as amply demonstrated in mouse knockout studies. A degree of perspective is afforded by comparing the effect of non-expression of two crucial tumour-suppressors: p53 and pRB. Mice engineered to be *Trp53*-null are born apparently normal, anatomically and physiologically. Only after about six months does their phenotype of increased tumour incidence emerge^{§71}. *Trp53*, and by extension the human *TP53*, are tumour-suppressor genes, *par excellence*, but that is all they are. In contrast, mice engineered to be *Rb1*-null die before day 16 *in utero*, with major neural tube deformities, flaws in haematopoiesis, and liver and lens defects^{§224}. Clearly, *Rb1*, and by extension *RB1*, have extremely important biological roles beyond tumour suppression. Perhaps the best generalisation of pRB function is to consider it as a key determiner of cellular fate. It profoundly influences proliferation, differentiation, senescence, and apoptosis^{®135} ^{®184}. The retinoblastoma-associated protein is no less than the kismet of cells.

Translation

The *RB1* mRNA transcript contains an open reading frame encoding 928 amino acids, and SDS-PAGE immunoblotting detects at least five mobility variants with indicative molecular weights in the range 105–110 kD. These are believed to result from the adoption of multiple conformations determined by post-translational covalent modification, addressed further below. There is some evidence for translation from a second AUG start site resulting in an amino-terminally truncated variant seen by immunoblotting as a protein of 98–104 kD indicative molecular weight. The functional significance of this is unknown. It

has also been suggested that sequence variations in the 5' untranslated region may affect mRNA structure and thence translation efficiency¹⁰⁸.

Conservation and homology

Species including plants^{®§57} ^{®§82}, insects, fish, amphibians, birds, and other mammals have proteins clearly related to human pRB by sequence similarity {Table 1}. Interestingly, no close homologues exist among unicellular organisms such as yeast. This is entirely in keeping with the principal biological functions of pRB being the constraint of proliferation and the implementation of differentiation, neither of which is of great relevance to such an organism.

Spacios	Common name	Homology length	Sequence	comparison
Species	Common name	(amino acids)	Identity (%)	Similarity (%)
Pan troglodytes	Chimpanzee	882	98	98
Mus musculus	Mouse	928	89	93
Rattus norvegicus	Norway rats	900	89	94
Gallus gallus	Chicken	937	71	81
Notophthalmus viridescens	Eastern red-spotted newt	914	59	75
Xenopus laevis	African clawed frog	936	57	74
Canis familiaris	Dog	518	95	97
Oncorhynchus mykiss	Rainbow trout	944	54	70
Oryzias latipes	Japanese medaka fish	942	50	67
Populus (hybrid)	Aspen	790	24	40
Chenopodium rubrum	Red goosefoot	805	24	40
Arabidopsis thaliana	Mouse-ear cress	895	23	40
Euphorbia esula	Leafy spurge	528	25	44
Zea mays	Maize	765	24	40
Drosophila melanogaster	Fruit fly	709	23	40
Pisum sativum	Garden pea	792	24	40
Caenorhabditis elegans	A nematode worm	870	21	36

Data from NCBI/BLAST. Comparison is with *Homo sapiens* pRB. Similarity implies identity or a conservative amino acid substitution.

Table 1: pRB protein sequence conservation

Within the human proteome, two proteins are sufficiently similar to pRB in terms of sequence conservation and function to support the notion of a 'pocket-protein' family {Table 2}. Their degree of similarity to pRB is of the same order as that of the nearest plant pRB homologues. Whether this implies that pRB is strongly conserved and p107 and p130 are closely related, or precisely the opposite, is entirely subjective. It is telling, however, that while pRB has been established as a bona fide tumour-suppressor, there is insufficient evidence to support such a role for either p107 or p130^{®49}.

Protoin	Homology length	Sequence	comparison
Gene	(amino acids)	Identity (%)	Similarity (%)
p107 RBL1	559	27	44
p130 RBL2	703	24	41

Data from NCBI/BLAST. Comparison is with pRB. Similarity implies identity or a conservative amino acid substitution.

Table 2: Human proteins similar to pRB

Tissue-specificity of pRB expression

A comprehensive study of pRB expression in 53 human tissues was performed by Cordon-Cardo and Richon⁵⁴. Expression was seen in all but interstitial matrix, which is essentially acellular. There was variability of expression between and within organs, however. In stratified epithelia, cells in the proliferating basal layer expressed low levels of pRB, while those in suprabasal layers expressed it strongly. In simple epithelia, expression was generally high, but where compartments differing in proliferation rate were distinguishable, an inverse correlation between expression and proliferation rate

was seen. Within the testis, this pattern was again repeated, with non-proliferating Sertoli cells having intense expression, while spermatogonial cells, spermatocytes, and spermatids had low or undetectable levels. Within tissues of the central nervous system, expression was low with the conspicuous exception of Purkinje cells, where it was intense. Intense staining was also seen in cells of the peripheral nervous system. Among haematopoietic cells, proliferating B-cells expressed high levels of pRB, while that seen in mature B-cells and in T-cells was much lower. It was the authors' overall conclusion that pRB regulated the proliferation of maturing cells.

Sub-cellular disposition of pRB

The pRB protein is predominantly nuclear during interphase, being associated with low-density euchromatin. In metaphase and anaphase, it disperses to the cytoplasm eventually to reassociate with euchromatin during telophase³⁶⁴. Hypophosphorylated pRB is tethered to the nucleus, but this linkage is weakened upon phosphorylation^{88 373}. Nevertheless, a confocal microscopic study of HL60 cells has shown that the ratio of nuclear to cytoplasmic pRB is stable both throughout the cell-cycle and during differentiation, independent of its phosphorylation status⁴²⁰. However, these cells do not contain functional p16, an inhibitor of pRB phosphorylation, as they have only a single non-functional mutant *CDKN2A* allele³¹¹. Consequently, pRB phosphorylation status may be abnormally high in these cells, and greater partitioning of pRB to the cytoplasm through reduced tethering may result.

Turnover of pRB

In the normal course of events, pRB levels do not appear to be controlled by regulated proteolysis, although this does play a role in viral infection¹²³ and in apoptosis^{95 370}. It has been suggested by one group¹⁰⁷ that a cathepsin-like protease, dubbed SPase, may be involved in the cell-cycle dependent regulation of pRB, but this has not been confirmed. There is doubt also over the validity of their methodology in that, having synchronised cells first by isoleucine starvation, and then by aphidicolin treatment, the induction of this protease in response to this treatment cannot be excluded. More recently, a gene over-expressed in some hepatocellular carcinomas was found to encode a protein, gankyrin, that binds pRB and facilitates its 26S-proteasome-mediated destruction¹⁴⁹. Data are as yet too sparse to conclude what the normal role of this protein may be, but the recent finding that it binds CDK4 in competition with p16, but does not inhibit it, suggests that this role may be significant²³⁰.

Function of pRB

Scope of review

With such a broad range of functions, the molecular biology of pRB, and its attendant literature, are necessarily extensive and complex. A comprehensive review would fill several volumes, and given the burgeoning of knowledge in this area, would likely be obsolete before it reached publication. While many aspects of pRB are presented below, the emphasis is very much on the role it plays in tumour-suppression, and in particular, in the regulation of proliferation.

Basis of pRB function

The retinoblastoma-associated protein appears to contain no inherent enzymatic activity and the great weight of evidence is in favour of protein-protein interaction being its dominant operative mode^{®263}. If so, its influence depends on its ability to modify the inter-molecular interactions of the bound protein. This may be achieved by one of four major mechanisms, given here in order of decreasing apparent relevance to pRB: masking of interaction domains; constraint of physical location; molecular matchmaking; and alteration of physical conformation.

Several domains within pRB have been implicated in mediating protein interactions, and conserved motifs in proteins that bind pRB have also been identified.

pRB-binding motifs

The LXCXE motif

The basis for the retinoblastoma-like effects of adenovirus infection in rodents became clearer with the discovery that a viral protein, E1A, bound pRB in a step necessary for productive infection⁴⁰³. Similar proteins were soon found to be produced by other small DNA viruses⁸³. When the sequences of these were determined, many were found to contain a pentapeptide motif, LXCXE, including the adenovirus E1A protein (LVLDCPENP), the human papillomavirus E7 protein (VDLVCHEQL), and the large-T proteins of SV40 (ENLFCSEEM) and polyomavirus (PDLFCYEEP). More recently, the sequence LPCAE has been implicated in the pRB binding of the NSP90 non-structural protein from the teratogenic human rubella virus, *Rubivirus*¹⁰³. The novelty here is that *Rubivirus* is not a DNA virus, but a positive-strand RNA virus. This attests to both the crucial role of pRB in mediating cellular affairs, and to the efficacy of the LXCXE motif in modulating this. Once identified, the LXCXE motif was found in many cellular proteins known to interact with pRB {Table 3}, most notably the D-cyclins⁷⁴⁸⁹.

LXCXE relatives

Two variations on the LXCXE motif have been suggested to operate similarly. The first, IXCXE has been identified in the transcriptional repressor HBP1, however it was shown that it was the LXCXE motif also present that mediated its association with p130³⁷⁷. A stronger case for pRB binding by IXCXE exists with HEC⁴²⁷, although it was not found to be essential for function. The second variant is LXSXE, suggested by Durfee et al.⁸¹ as a possible basis for the binding of PPP1CA-2. They noted, however, that the domains of pRB associated with the binding of large-T and PPP1CA-2, while similar, were not identical, leaving open the possibility of a different mode of interaction. Further supportive evidence for a role for LXSXE comes from the directed-mutagenesis study in *Rubivirus* cited above¹⁰³. In seeking to determine the importance of the LPCAE motif, Forng and Atreya altered the cysteine to arginine, and so showed that this was critical for proliferation. After approximately one generation time, however, the

The LXSXE motif is present in the transcription factors JUN, MYC, BRCA1, E2F4, and E2F1 {Table 3}, considered by many to be the most important pRB-interacting protein of all. Its presence in BRCA1 in addition to an LXCXE motif may account for the continuing ability of BRCA1 to bind pRB when this motif is disrupted⁹¹. In addition to these, it is present in ARID3B (ERLESGEPA), ELF1³⁹³ (VQLLSSEEL), ENC1 (VQLLSSEEL), GABPB1 (TGLVSSENS), lamin A/C (ALLNSKEAA, RKLESTESR), RBBP6³²³ (ALLESDEHT), and TRIP11 (KKLSSAEND, KSLLSQEKE, QLLSSNENF), all of which are known to bind pRB. Furthermore, it is present in p107 (KHLNSIEEQ) and in pRB itself (SMLKSEEER), perhaps accounting for reports of oligomerisation in vitro¹⁴⁴, and the reported ability of the C-terminus of pRB to block repression by the A/B pocket *in trans*¹³⁶. The possibility that LXSXE may have a major role in pRB interactions does not appear to have been fully appreciated as there is very little reported in the literature.

The DLXX (X) E motif

While inspection of the viral protein sequences revealed the importance of LXCXE, a further potential binding motif may have been overlooked. The LXCXE motif within the adenovirus E1A protein CR2 region also conforms to the pattern DLXXXE, as it does in polyomavirus large-T and HPV E7. In SV40 large-T, this overlap is absent, but a separate instance of DLXXXE exists (QLMDLLGLERSA). A similar The pRB subsystem–5

V

motif, DLXXE, conserved among adenovirus strains, appears in the adjacent CE1 region. This composite motif, DLXX (X) E, is present in five of the proteins listed in Table 3, including two with no other recognised binding motif, notably MDM2. It is present also in MYOD (DSPDLRFFEDLD), and TRIP11 (LKQDLNDEKKR), both of which bind pRB.

pRB protein structure

Figure 1: Salient pRB features

N-terminal domains

Sterner et al. have reported two related kinases, both referred to as RbK, that bind pRB within the 89–202 amino acid region, and phosphorylate pRB, and possibly the transactivation domain of MYC, in G_2/M . The pRB domain implicated appears essential for pRB-mediated growth suppression and is altered in some retinoblastoma patients^{357 358}. RbK does not appear to have been further characterised. In addition, the heat-shock protein HSP73 associates with the pRB 301–372 amino acid region¹⁷⁰.

The 'A' domain and the 'B' pocket

The investigation of viral protein binding led to the identification of two jointly required pRB domains {Figure 2}: the 'A domain', spanning amino acids 372-578 [1], and the 'B pocket', spanning amino acids 639–770 [2]. These regions have also been shown to be necessary for nuclear tethering of pRB³⁷⁴, but not for growth suppression⁶⁵. Structural studies²²⁵ suggest that the B pocket domain forms a lobe containing an apical cleft which is the principal binding site [3]. The conformation of B, and therefore of the binding cleft, seems to depend on the intact presence of the A domain. The functional combination of these domains is referred to as the 'small A/B pocket'³¹⁰, and it is from this feature that pRB, p107, and p130 derive their designation of 'pocket proteins'.

Key: pRB A domain = light blue; pRB B pocket = green; LXCXE-containing nonapeptide from HPV E7 = dark blue. Data from Lee et al. 225 . Rendered by Cn3D.

Figure 2: The pRB small A/B pocket

The large A/B pocket and the C-pocket

The pRB small A/B pocket is also necessary for binding of members of the E2F transcription factor family³¹⁰, and, while this may be sufficient for binding in vitro¹⁸⁵, it seems likely that an additional pRB C-terminal domain within the region spanning amino acids 841–870¹⁴⁷ is required in vivo¹⁶². Together with the small A/B pocket, this is referred to as the 'large A/B pocket'. This additional requirement may

in part be a consequence of the absence of the LXCXE motif from E2F. This further suggests that distinct domains within the A/B region may mediate interaction between LXCXE-bearers and E2F, and therefore, this binding need not be competitive. Indeed, simultaneous binding may be essential for function.

This additional domain intersects with the binding domain of the ABL tyrosine kinase, located at amino acids 768–869 and termed the 'C-pocket'⁴⁰². Despite the overlap, it appears that simultaneous binding by pRB of ABL via the C-pocket and either E2F via the large, or cyclin-D2 via the small A/B pocket is possible⁴⁰¹. Within the C-pocket, at amino acid 792, begins a domain implicated in the binding of MDM2⁴¹¹. This same region, albeit imprecisely defined, has also been shown to be necessary and sufficient for the binding of PPP1CA⁸¹.

At the extreme C-terminal end of the C-pocket, a motif 870KXLKXL875 exists that is believed to constitute the principal pRB–cyclin interaction domain for those that do not carry the LXCXE motif, that is, non-D-cyclins. It may also provide an alternative interaction mode for those that do⁴. One consequence of this is that it is required for effective targeting of pRB by CDK2, but not CDK4. Unlike the relatively stable and abiding interaction between the small A/B pocket and cyclin-D1, that between a cyclin and the KXLKXL motif appears to be transitory, serving more to direct and orient the associated kinase with respect to its substrate than to promote an on-going association.

The C-terminal region: amino acids 876–928

Driscoll et al.⁷⁸ have identified a region spanning amino acids 880–900, dubbed 'M89', that appears to be a critical determinant of C-terminal pRB conformation, and can significantly affect the accessibility of pRB targets to modifying enzymes, in particular, CDKs. Their work extended to the identification of other key determinants of pRB conformation, noted in Table 5, and provided the first insight into the structural basis for the multiple electrophoretic species of pRB seen.

Cyclin-D1 may have a third mode of interaction with pRB. Pan et al.²⁹² report that pRB L901 mediates a productive cyclin-D1 interaction that appears to be distinct from that involving the nearby KXLKXL motif. Whether interaction here influences the role of the immediately adjacent M89 region is unknown.

Within M89 is a sequence 883DEADG887, that is a site for caspase-dependent cleavage of pRB during apoptosis³⁷⁰. It seems likely that such cleavage would prevent both the association of MDM2, and that of cyclin-D1 mediated via L901.

pRB-binding proteins

Scope of pRB-protein interactions

At least 129 proteins are believed to interact directly with pRB^{®263}, and a selection of these that have been, or potentially may be, associated with tumorigenesis, is listed in Table 3.

Competition for pRB binding

There appear to have been no definitive and comprehensive studies either of the mutual competition among potential pRB binding proteins for access, or of any precedence among any such competitors. In some cases, specific data are available, and in others, reasonable inferences can be drawn based on the apparent necessity of a single, well-defined pRB domain for binding of more than one protein, as with the B pocket. Slightly less robust implication of non-competition exists in the form of apparent spatial separation and non-intersection of binding requirements. The situation is extremely complicated, as there are undoubtedly multiple interactions among protein binding, covalent modification, and conformation. Such data as pertains to representative proteins interacting via the better-defined pRB domains is given in Table 4.

Protein	Motif(s)	pRB domain(s)	Significance
л лте ⁹²	D dl g s s e ee		Binding prevents pRB repression of E2F ⁹²
AAII	LK dl de e ifd	_	AATF also mediates apoptosis ²⁹⁰
ABL ⁴⁰²	VV l dst e al	C ⁴⁰²	Binding inhibits ABL kinase ⁴⁰²
AHR ³⁰⁷	DMLYCAESH	Probably AB ³⁰⁷	Dioxin carcinogenesis ³⁰⁷
ATF2 ²⁹⁵	_	C-terminus ²⁹⁵	JUN induction ³⁸⁸ pRB autoinduction ²⁹⁵
BRCA1 ^{22 91}	QK L P C S E NP KK L E S S E EN	1) A?B 2) Another ⁹¹	BRCA1 regulates genome surveillance ³⁹⁷
Cyclin-A ⁴	_	870KXLKXL ⁴	Proliferation regulation ^{®64}
Cyclin-E ⁴	_	870KXLKXL ⁴	Proliferation regulation ^{®193}
Cyclin-D1 ⁷⁴	HQ L L C C E VE	1) A?B ^{74 89} 2) C-terminus ^{§292}	Mitogen response; proliferation regulation ^{®342}
Cyclin-D2 ^{§89 402}	ME l LCH E VT	A?B ^{§89}	Mitogen response; proliferation regulation ^{®342}
Cyclin-D3 ⁷⁴	ME l L C C E GT	A?B ^{74 §89}	Mitogen response; proliferation regulation ^{®342}
E2F1	QS l l s l e qe	$AB+^{147\ 310}$	Proliferation regulation ¹⁸⁰ ; apoptosis ^{®304}
E2F4 ²³¹	EE L MSSEVF	AB+?	Cell-cycle arrest ¹¹⁴
HDAC1 ²⁴⁴	KRIACEEEF? ¹ 91	1) AB? 2) indirect? ²¹³	Chromatin modelling ²⁴⁴ Modulation of p53 activity ²⁴²
HSP75 ⁴⁵	EV l f c f e Qf	AB^{45}	pRB chaperone in M-phase and after heat shock ⁴⁵
ID2 ²¹⁸	_	AB ¹⁶⁶	Implicated in proliferation, differentiation, and apoptosis ^{102 219}
JUN ²⁷⁸	LK l a s p e le	1) A?B ²⁷⁸ 2) C-terminus ²⁷⁸	Implicated in proliferation, oncogenic transformation, and apoptosis ^{®337}
MCM7 ³⁵⁸	-	N-terminal to amino acid 380 ³⁵⁸	DNA replication licensing
MDM2 ⁴¹¹	QK DL VQ E LQ	C-terminus ⁴¹¹	Regulation of p53 activity
MYC ³²⁰	QK lisee dl Sl l s ste ss	B ³²⁰	Cellular growth, proliferation, and apoptosis ³⁰⁰
p21 ²⁷⁵	-	1) AB ²⁷⁵ 2) C-terminus? ²⁷⁵	Proliferation regulation; senescence
POLD1 ²⁰⁸	GK l P C L E IS	AB ²⁰⁸	Binding stimulates enzyme activity ²⁰⁸ Required for S-phase DNA synthesis ^{®150} Required for DNA mismatch ²³⁷ and UVR repair ⁴²⁵
PPP1CA ⁸¹	P DL Q S M E QI	C-terminus ^{81 368}	Regulation of pRB by dephosphorylation ^{®369}
PRDM2 ³⁴	VN DL GE EE EE PE DL LE E PK TE DL PK E PL GI DL PV E NP	A?B ³³	Tumour-suppressing, proapoptotic methyltransferase ^{®35}
prohibitin ³⁹⁶	-	B ³⁹⁶	Inhibitor of E2F transactivation ³⁹⁶
RAF1 ³⁹⁵	QI l S S I E LL	A?B ³⁹⁵	Major receptor tyrosine kinase signal transduction element ^{®192}
RBBP1 ⁹⁴	ET L VCHEVD	Probably AB94	Repression of E2F-dependent transcription ²¹⁴
RBBP4 ³⁰⁹	LK L H S F E SH	1) A?B? ³⁰⁹ 2) Indirect ²⁸¹	Chromatin remodelling ^{281 407}
RBBP7 ³⁰⁹	_	Probably A?B ¹⁶¹	Modulation of BRCA1 function ⁴⁶
RBBP8 ¹¹²	AE L E C E E DV	1) Probably AB ¹¹² 2) Another? ⁶⁵	Modulation of BRCA1 function
RBBP9 ⁴⁰⁵	TE L HCDEKT	Probably AB ⁴⁰⁵	Role in cellular transformation ⁴⁰⁵
RFC1 ²⁶⁵	AS LVCQE LG KA L G S KEIP GV L E S I E RD	Probably AB ³⁰¹	Component of replication factor C; necessary for processive DNA synthesis.
TAF1 ³³⁵	KVLSSTEVL S dl dSde	1) C ³³⁵ 2) AB+ ³⁴⁶	RNA polymerase II regulation ^{®398}
UBTF ⁴⁰	YS L Y CAE LM	Probably AB ⁴⁰	RNA polymerase I (ribosomal RNA) regulation ³⁹⁰

Key: - = no recognised motif, or no binding domain data; B = B-pocket; C = C-pocket; AB = small A/B pocket; AB+ = large A/B pocket; ? = domain implicated, but not proven to be necessary. Binding motifs and domains are described in the text.

Table 3: Selected pRB-interacting proteins

pRB	RbK	HSP73	Cyclin-D1 ^a	E2F	ABL	MDM2	PP1a	Cyclin-A
HSP73	-							
Cyclin-D1 ^a	(+)	(+)						
E2F1	(+)	(+)	+					
ABL	(+)	(+)	+	+				
MDM2	(+)	(+)	(+)	Х	(X)			
PP1a	(+)	(+)	+	(X)	(X)	(X)		
Cyclin-A	(+)	(+)	(+)	+	-	-	_	
Cyclin-D1 ^b	(+)	(+)	(+)	(+)	_	_	-	-
^a = binding via LXCXE motif and small A/B pocket. ^b = binding via pRB C-terminal domain								

Key: X = compete for binding; + = can bind simultaneously; - = no data; (+), (X) = inferred

Table 4: Competition matrix for pRB binding

Phosphorylation of pRB

The earliest studies of the retinoblastoma-associated protein revealed that it was a nuclear phosphoprotein²²⁸, and that differences in phosphorylation status accounted for the multiplicity of electrophoretic species¹¹¹ seen. This observation facilitated the discovery that the phosphorylation state of pRB altered in synchrony with progression through the cell division cycle, with it being minimally phosphorylated upon synthesis and rapidly and sequentially phosphorylated at the G₁–S transition²⁵⁵. The basis for this sequencing lies partly in subtle differences in substrate specificity of the relevant kinases⁴²⁴ and partly in their successive activation. It is also believed that conformational changes wrought by earlier phosphorylations are necessary to allow subsequent access to other sites. The significance of this sequential phosphorylation lies in the apparent independence of control of protein binding among the different interaction domains within pRB²⁰⁰. The proportion of phosphorylated pRB decreases at the beginning at anaphase²³⁸, indicating the existence of regulated phosphatase activity.

pRB kinases

It was soon found that pRB was a substrate for the CDC2 kinase in vitro²³⁴, and of this²²⁹, or related kinases in vivo¹⁹⁸. The latter possibility was confirmed with the discovery that pRB was a substrate of CDK2⁶, CDK4¹⁸⁸, and the closely related CDK6²⁵⁴. Of the sixteen potential SER/THR-PRO CDK targets in pRB, thirteen have been found to be phosphorylated in vivo {Figure 1} and considerable data concerning the timing, kinase-specificity and consequence of these phosphorylations have been gathered {Table 5}.

Upon mitogen stimulation, pRB is phosphorylated by RAF1 before it is by cyclin-D–CDK4³⁹⁵. This may provide an efficient link between RTK activation and the abrogation of pRB growth-suppression operative independently of that supplied by cyclin-D regulated kinases. This also places pRB downstream of RAS, and so may contribute to the oncogenic potential of the latter²⁹⁹.

The RbK kinases of Sterner et al., also phosphorylate the pRB N-terminus during G_2/M , and are apparently distinct from CDC2, CDK2, CDK4, MAPK1, and MAPK3³⁵⁷.

pRB phosphatases

Given the established importance of pRB phosphorylation, and the emerging biological importance of balanced antagonistic kinase/phosphatase pairs, there is a surprising dearth of data concerning the identity and regulation of pRB phosphatases. Using a system based upon the yeast two-hybrid screen of Fields and Song⁹⁸, Durfee et al.⁸¹ identified and cloned a protein that directly interacted with pRB, and was found to be the catalytic subunit of a type I protein phosphatase complex (PP1), PP1CA2. Through pRB immunoprecipitation of extracts of human cells at intervals after release from density-arrest, they found that the association of PP1CA2 with pRB was cell-cyclical, occurring in G₁, diminishing throughout S and G₂, and returning in M-phase. By gel-mobility shift, PP1CA2 was inferred to bind the

V

hypophosphorylated form of pRB, although binding to phosphorylated pRB was not ruled out. Ludlow et al.^{238 239} have pursued the timing of dephosphorylation and found that it progresses sequentially.

The mode of physical interaction between pRB and PP1 has not been determined unequivocally. Several authors^{81 369} have suggested that the LXSXE sequences present imply association via the small A/B pocket, and therefore in competition with, and susceptible to the same regulation as, carriers of the LXCXE motif. Such an interaction is difficult to reconcile with the ability of PP1CA2 to bind a pRB construct that lacks the entire B domain, but the inability to bind one lacking only the region C-terminal to this⁸¹. More recent work has provided strong evidence that it is in fact the C-terminal region of pRB that associates with PP1, and in so doing, non-competitively inhibits its phosphatase function³⁶⁸. This does not necessarily preclude the involvement of LXSXE, or the overlapping DLXXXE, in this interaction {Table 3}, or that there may also be some affinity between PP1 and the small A/B pocket. It has been established that, as with other pRB-interacting proteins, the binding of PP1 is regulated by the phosphorylation state of pRB, specifically, that phosphorylation of S249, T373, S811, T821, or T826 prevents association at the C-terminus, while that of S608, S612, S780, or S807 does not³⁶⁹ {Table 5}.

On initial consideration, it appears paradoxical that an enzyme should be inhibited by its principal substrate: how could it ever function? Further reflection in the context of cyclical control of pRB phosphorylation, yields an attractive explanation for this. With PP1 bound to pRB and inhibited, any newly activated pRB kinase can phosphorylate pRB unopposed. In so doing, it may cause the release of proteins bound to pRB, with potentially far-reaching effect. In some cases, the particular pRB molecule that is phosphorylated may have been sequestering PP1, and this too would be released and disinhibited. If the kinase phosphorylated sites that also prevented re-association of PP1 with pRB, then it would be free to oppose the kinase and dephosphorylate pRB. This in turn may render pRB once again able to bind and inhibit PP1, completing the cycle. The net result of these interactions is to provide a limited period during which a variety of pRB regulated enzymes may be activated. This is consistent with the observed cell-cyclical nature of the pRB–PP1 association. In addition to being attractive from a mechanistic viewpoint, such a scenario also explains the otherwise problematic observation that despite inhibition of PP1 by pRB, the former is able to bind and inhibit PP1, is dephosphorylated by it, whereupon it immediately proceeds to bind and inhibit it.

pRB acetylation

Chan⁴³ et al. have established that pRB is also the subject of cell-cycle synchronised acetylation, and that this materially affects pRB function by hindering phosphorylation by CDKs and enhancing its affinity for MDM2. The ramifications of this novel aspect of pRB regulation remain to be explored.

S/T	Phosphorylation	Dephosphorylation	Relevance of phosphorylation
Т5]	in vivo phosphorylation not reported	1
S230		n vivo phosphorylation not reported	1
S249	Inaccessible when LXCXE bound ¹²⁴ Phosphorylated by cyclin- D1–CDK4, but may require prior T826 phosphorylation ⁴²⁴	Begins at M; complete by M+60 min ^{§319} Dephosphorylated in response to TGFβ1 ¹⁵⁹	May prevent PP1 $lpha$ binding ³⁶⁹
T252	Inaccessible when LXCXE bound ⁴²⁴ Phosphorylated by cyclin- D1–CDK4, but may require prior T826 phosphorylation ⁴²⁴	Begins at M; complete by M+60 min ^{§319} Dephosphorylated in response to TGFβ1 ¹⁵⁹	No data available
т356	Phosphorylated by cyclin- D1-CDK4 ⁴²⁴ Not phosphorylated by cyclin- A-CDK2 ⁴²⁴	Begins at M; complete by M+60 min ^{§319}	Likely to affect pRB conformation ⁷⁸
т373	Phosphorylated by cyclin- D1–CDK4 ⁴²⁴ Begins at M+30 min; complete by G1 ^{S319}	Begins at M; complete by M+30 min ^{§319} Dephosphorylated in response to TGFβ1 ¹⁵⁹	May prevent PP1 α binding ³⁶⁹
S567	No in vivo phosphorylation repo Mutation prevents pRB-mediate	rted, but suggested based on in vitro ed growth arrest and affects protein	data ¹³⁶ . Not solvent accessible ²²⁵ . binding and phosphorylation ³⁷⁴ .
S608	Phosphorylated by cyclin- D1–CDK4 and cyclin-A–CDK2, but not cyclin-E–CDK2 ⁴²⁴ Increases during M-phase, peaks at M+30 min ^{§319}	Begins after M+30 min ³⁶⁹ Complete after M+4 h^{8319} , that is, in G ₁	Probably prevents E2F binding ²⁰¹
S612	Phosphorylated by cyclin- A/E–CDK2 but not cyclin- D1–CDK4 ⁴²⁴	No data available	Probably prevents E2F binding ²⁰¹
S780	Phosphorylated by cyclin- D1–CDK4 but not cyclin- E–CDK2 ¹⁹⁷ Increases during M-phase ³⁶⁹ Peaks at M+30 min ^{\$319}	Begins after M+30 min ; complete after M+6 $h_{s^{319}}^{s^{319}}$, that is, in G ₁ Dephosphorylated in response to TGF β 1 ^{TS9}	Probably prevents E2F binding ^{197 201}
S788	Phosphorylated by cyclin- D1–CDK4 ⁴²⁴	Begins at M; complete by M+ 60 min ^{§319}	Probably prevents E2F binding ²⁰¹
s795	Phosphorylated by cyclin- D1-CDK4 and cyclin- A/E-CDK2 ⁴²⁴ Inaccessible when LXCXE bound ⁴²⁴ Begins at M+30 min; complete by G_1^{S319}	Begins at M; complete by M+30 min ^{§319}	Probably prevents E2F binding ²⁰¹
S807	Inaccessible when LXCXE bound ⁴²⁴ Phosphorylation increases during early M-phase ³⁶⁹	Begins at M; complete by M+40 min ^{§319} Dephosphorylated in response to TGFβ1 ¹⁵⁹	Likely to affect pRB conformation ⁷⁸ Facilitates further pRB phosphorylation ⁷⁸ Probably prevents E2F binding ²⁰¹ Causes dissociation of pRB–ABL complex ²⁰⁰
S811	Phosphorylated by cyclin- D1–CDK4 ⁴²⁴	Dephosphorylated in response to TGFβ1 ¹⁵⁹	Likely to affect pRB conformation ⁷⁸ Facilitates further pRB phosphorylation ⁷⁸ Probably prevents E2F binding ²⁰¹ Causes dissociation of pRB–ABL complex ²⁰⁰ May prevent PP1 α binding ³⁶⁹
т821	Phosphorylated by cyclin- A/E-CDK2 but not cyclin- D1-CDK4 ⁴²⁴ Increases from soon after M-phase onset, by M+ 40 min ^{§319}	Never fully dephosphorylated ^{§319} May not be a target of PP1 isoforms ^{\$319} Rapid, partial dephosphorylation begins at M ^{§319} Second partial dephosphorylation begins at M+40 min ^{§319}	Likely to affect pRB conformation ⁷⁸ Probably ⁴²⁴ prevents LXCXE binding, but some doubt exists ^{\$319} May prevent PP1 α binding ³⁶⁹ May dissociate preformed pRB-LXCXE ⁴²⁴
т826	Inaccessible when LXCXE bound ⁴²⁴ Phosphorylated by cyclin- D1–CDK4 but not cyclin- A/E–CDK2 ⁴²⁴	Begins at M-phase onset; complete by M+10 min ^{§319} Preferentially targeted by PP1δ ³⁶⁹	Prevents LXCXE binding ⁴²⁴ May prevent PP1 α binding ³⁶⁹ Does not dissociate existing pRB-LXCXE ⁴²⁴ Prerequisite for S249 and T252 phosphorylation ⁴²⁴

M = time of release of green monkey kidney fibroblast cells from nocodazole inhibition^{§319}.

Table 5: pRB phosphorylation summary

The pRB subsystem

4 Phosphorylation-dependent regulation of proliferation by pRB A minimal proof

That pRB could influence the progression through the cell division cycle was unambiguously demonstrated by Goodrich et al., who injected purified pRB into proliferating cells and discovered that it prevented passage into S phase from G_1^{124} . This effect could be overcome by the simultaneous expression of cyclin-A or cyclin-E¹⁵¹, suggesting that it was phosphorylation of pRB by a CDK that was critical, a possibility supported by the increased phosphorylation of pRB seen in this experiment. Coexpression of E2F1 was also able to overcome the G_1 arrest, and do so without influencing pRB phosphorylation¹⁸⁰, establishing that E2F1 acted either downstream, or independently of pRB. The former appeared the more likely as E2F1 was known to bind pRB and thereby be functionally inhibited¹⁰¹. Further support came from the finding that E2F1 bound unphosphorylated pRB, but not that phosphorylated by cyclin-A–CDK2, cyclin-E–CDK2 or cyclin-D1–CDK4³⁶³. The final link necessary to connect pRB with entry into S-phase, and therefore control of cellular proliferation, is provided by the preponderance of genes among the transcriptional targets of E2F1 whose encoded proteins are critical to this progression. Among these proteins are DNA pol- α , TS, PCNA, cyclin-E, cyclin-A, and CDC2⁵⁹. Therefore, it can reasonably be concluded that the phosphorylation-dependent release of E2F1 from pRB inhibition regulates progression from G_1 to S phase. As a corollary, whatever influences the phosphorylation status of pRB is likely to influence progression through the cell-cycle⁵⁸.

A model scenario

Caveat lector

The enormous complexity of pRB interactions defies exposition in any readily assimilable manner. Nevertheless, a 'thought experiment' involving a model system, wherein cells arrested in G_1 by virtue of an absence of mitogens are stimulated to proliferate, can provide a basis from which a possible sequence of events can be deduced from experimental observations. Of necessity, simplifying assumptions have been made. For each of the proteins cited, multiple close relatives with overlapping but distinct characteristics exist, and their expression and interactions may vary with organism, cell-type, and physiological context. As a result, the scenario presented may be neither generally applicable, nor even applicable in any particular case.

G_1 arrest

When cells arrest in G_1 for want of mitogenic stimulation, pRB is essentially unphosphorylated and therefore competent to bind proteins via any of its interaction domains. E2F1/2/3–DP1/2/3 transcription factors, able to associate via the pRB large A/B pocket are favoured candidates, and in this way pRB is localised to the promoter of E2F-regulated genes. The interaction between these molecules involves the transactivation domain of E2F, and this is thought to contribute to gene repression.

This binding does not prevent pRB interacting with additional proteins through other domains. There is general agreement^{31,244} that pRB is able to recruit active HDAC1 to E2F, but opinion is divided over how this occurs. Much of the controversy centres on the putative binding of the HDAC1 IXCXE sequence to the pRB small A/B pocket. Magnaghi-Jaulin et al.²⁴⁴ found that deletion of this sequence strongly decreased binding, as did the presence of a synthetic IXCXE peptide, while an LXCXE peptide was an even better competitor. Consistent with this, Dahiya et al.⁵⁶ found that mutation of the pRB LXCXE binding cleft prevented HDAC1 association. Conversely, two groups have arrived at precisely the opposite conclusion^{65,191}. The second area of controversy is over whether the interaction between pRB and HDAC1 is direct or mediated by an additional protein. The results of Magnaghi-Jaulin et al.²⁴⁴

support the notion of a direct interaction between the two, involving the A/B pocket, but not the C-terminal region of pRB. Others have proposed a matchmaking role for RBBP1²¹³ or RBBP4¹⁹¹. These apparently contradictory results are perhaps most easily reconciled by assuming that all of these interaction modes occur, and that differences in experimental conditions are responsible for the discordant results.

However HDAC1 binds pRB, it does so coincidently with pRB dephosphorylation³⁰⁸, being bound in early G_1 . At that time, it deacetylates amino-terminal lysine amino acids of nucleosomal core histones, reinstating the positive charge there. This is thought to enhance the affinity of the core for DNA, and thereby deny access to the promoter by the transcriptional apparatus and thus repress the gene. It is released at the transition to S-phase³⁰⁸, coincident with the observed acetylation of histone H4⁹⁷ and nucleosomal relaxation.

With many genes whose transcription is necessary for S-phase progression having E2F binding sites in their promoters, unphosphorylated pRB, will cause cell-cycle arrest at this point.

Release from inhibition Cyclin-D1 elevation

There is a low level of constitutive expression of *CCND1* mediated through CREs in its promoter²⁷², but in the absence of mitogenic stimulus, cyclin-D1 is rapidly degraded via the ubiquitin-directed proteasomal subsystem^{67 117}, its half-life being of the order of ten minutes. This situation changes abruptly upon mitogen stimulation, when cyclin-D1 levels rise dramatically²⁴⁰. Two mechanisms are though to be involved in this elevation.

Firstly, the rate of transcription of *CCND1* is increased. While studies in a variety of cell-types have uncovered elements of the signal transduction path leading to this activation, no overall pattern of general applicability has yet emerged, and apparent contradictions exist. The transcription factor MYC directly induces cyclin-D2³⁰, and probably also cyclin-D1³⁰², and consistent with this, the level of cyclin-D1 expression closely parallels the activation of MYC. The transcription factor LEF1 has also been shown to contribute to *CCND1* expression³⁴⁴. Strongly implicated are proteins with homology to RAS. RAS itself may initiate multiple independent molecular cascades leading to increased *CCND1* transcription. When activated by ectopic expression^{§99}, or by PDGF²⁹¹ stimulation, it can increase *CCND1* transcription via MEK1, MAPK1, and ultimately SP1 sites²⁷² in the promoter. Additionally, it may operate via MAPK3 and JUN, ultimately via an AP-1 promoter site⁸. The role of the different MAPK enzymes is not entirely clear as p38MAPK has been reported both to enhance *CCND1* transcription via ATF2 promoter sites in response to HGF stimulation³¹⁴, but also to cause a reduction in this rate²²¹. Two RAS homologues, Rac1^{§183} and Ral^{§143} have been shown to influence *CCND1* transcription, apparently via the NF- κ B subsystem.

The second mechanism of cyclin-D1 elevation is the enhancement of protein stability, and here, members of the PI3K family are involved. In addition to possible activation by RAS, PI3K is also downstream of G-protein-coupled membrane receptors³³¹, providing a further link between extracellular conditions and cyclin-D1 regulation. However activated, PI3K, probably via AKT1¹²⁰ or another protein kinase B, can inhibit the GSK3 β enzyme that is responsible for phosphorylation of cyclin-D1 T286⁶⁷ which would otherwise mark it for nuclear export¹² and accelerated degradation⁶⁸. Without this proteolysis, the half-life of cyclin-D1 rises to over one hour.

The mechanisms of enhanced cyclin-D1 expression are very complex, with multiple inter-links among the RAS, MYC, MAPK, and PI3K subsystems, multiple binding sites in the promoter, and multiple independent degradative pathways^{120 ®332}.

CDK4 activation

With cyclin-D1 levels elevated, and its cellular disposition increasingly nuclear, the opportunity for interaction with CDK4 increases. With three provisos, this will enable the CDK4 kinase function. Firstly, the association of cyclin-D1 with CDK4 is dependent on a serum-inducible assembly factor²⁵¹, possibly p21²⁹⁷. Secondly, CDK4 activity depends on its phosphorylation state, which in turn depends on the relative activities of CAK and CDC25A, which is itself subject to upstream regulation. Finally, complex assembly and kinase activation are both subject to inhibition by CKIs, particularly p16^{CDKN2A} and its relatives, and this may be further influenced by gankyrin {*See 'Turnover of pRB', above*}. Clearly, CDK4 is at a major regulatory node.

Initial pRB phosphorylation

Cyclin-D1, in this case, with its attendant activated CDK4 partner, can bind pRB either via the latter's small A/B pocket and its own LXCXE motif, or via an additional C-terminal pRB domain {Table 3}. Within the constraints of the model scenario being explored, only the second docking mode is available since the small A/B pocket is hypothesised to be occupied by HDAC1 or its linking protein. This has important implications for the functional scope of CDK4 since when docking is via the pRB C-terminus, S807 and S811 cannot be phosphorylated²⁹². Furthermore, a number of pRB CDK4 target sites are inaccessible when a protein is occupying the B pocket⁴²⁴. Phosphorylation at one of these, T826, appears to be a prerequisite for subsequent phosphorylation at S249 and T252, possibly influencing the regulation of N-terminal interacting proteins. These phosphorylations cannot therefore proceed at this time. Of the thirteen in vivo phosphorylation targets within pRB, given the substrate specificities, pRB conformation and steric constraints, the immediate CDK4 targets available in the model scenario are T356, T373, S608, S780, and S788.

Persistence of small A/B pocket interactions

These initial phosphorylations do not appear to suffice to cause the general dissociation of proteins interacting with pRB via the small A/B pocket as phosphorylation of T821 may be essential for this, and it is not a substrate for CDK4⁴²⁴. While T826 is a potential CDK4 target, phosphorylation here may not cause dissociation of existing complexes, even if it can prevent their formation⁴²⁴. This may be moot in this instance since T826 appears to be inaccessible when any protein is occupying the B pocket, as is assumed here. Hence, proteins interacting with pRB via their LXCXE motif and the small A/B pocket are immune to eviction by cyclin-D1–CDK4.

The situation is less clear with respect to HDAC1, as the mode of its attachment is uncertain. It has been suggested by Harbour et al.¹³⁶ that phosphorylation of pRB by CDK4 is sufficient to cause dissociation of pRB-HDAC1 complexes, but some doubt exists over this. Certainly, in co-transfection experiments they were able to establish that the ability of HDAC1 to bind via the pRB small A/B pocket is disrupted in the presence of cyclin-D2. Simultaneously, they found that a co-expressed pRB C-terminal fragment became phosphorylated, and that irrespective of its phosphorylation state, it was able to bind the pRB small A/B pocket, even when HDAC1 could not. However, their conclusion that the C-terminal domain is involved in inhibiting binding of HDAC1 is questionable. They appear to have given no consideration to the ability of co-expressed cyclin-D2 to interact directly with the small A/B pocket via its LXCXE motif. Within the context of a co-transfection, expressed cyclin-D2 could simply have out-competed HDAC1 or

its linking protein for binding. Nor did they address the possibility that cyclin-D2-dependent phosphorylation of the small A/B pocket itself may have inhibited HDAC1 binding. Unfortunately, based on this report, the suggestion that cyclin-D–CDK4 can displace HDAC1 from pRB has entered the literature and been adopted³⁶⁹.

Transcriptional activation

Notwithstanding this uncertainty, a mechanism exists whereby HDAC1 can be removed from the proximity of the promoter in consequence of CDK4 phosphorylation. It depends not on the severance of the link between pRB and HDAC1, but on that between pRB–HDAC1 and E2F. Phosphorylation at \$608, \$780, \$780, \$788 is sufficient to prevent binding of E2F to pRB^{201} , and while there appear to have been no definitive studies, it is assumed to suffice to dissociate existing complexes. If so, an early consequence of CDK4 activation will be the detachment of pRB, with its attendant histone deacetylase complex, from the promoter-bound E2F transcription factor. With the local deacetylase concentration reduced, acetylation of the core histones becomes possible, and with it, a loosening of the nucleosomal structure and the granting of access for the transcription apparatus to the E2F-regulated gene. This process has been reported recently in some detail by Morrison et al. with respect to the gene for cyclin-E1^{§264}.

Interestingly, TAF1, a component of the RNA polymerase II complex with serine kinase⁶⁹, histone acetyltransferase²⁵⁸, and ubiquitin ligase capacity^{§303}, also binds pRB via the large A/B pocket, resulting in the inhibition of its kinase, but not its acetyltransferase function³⁴⁶. While it has not been established experimentally, the apparent coincidence of pRB domains mediating E2F and TAF1 interaction suggests that TAF1 may also be evicted from pRB complexes by activated CDK4. This would be consistent with the reported ability of cyclin-D1 to bind TAF1 independently of pRB and prevent the inhibition of its kinase function by the latter³⁴⁷. This interaction may also affect transcription from promoters containing SP1 binding sites⁵. This modulation of TAF1 function may well influence RNA polymerase II transcriptional rate or specificity at exactly the time when such a control is required: the onset of S-phase^{®398}.

Following the de-repression of E2F-regulated genes, many of which encode proteins essential for the synthesis and repair of DNA³⁰⁵, there follows a period of active transcription and protein synthesis in preparation for S-phase. It is at some point during this period that entry into S-phase becomes inevitable.

Passage through the restriction point into S-phase

The term 'restriction point' was coined by Arthur B. Pardee²⁹⁴ to describe:

...a single switching point in $G_{\rm r}$... that regulates the reentry [sic] of a cell into a new round of the cell cycle.

Proceedings of the National Academy of Sciences of the USA, 71:1286–90, 1974

Factors that cells may encounter in vivo, such as 'high cell density, nutrient or serum insufficiency, or high cAMP [levels]' would cause an arrest at this point, while 'non-physiological agents such as hydroxyurea or colchicine' would not. The reference to cAMP as a cause of arrest in its own right reveals that its role in signal transduction was then unrecognised. The principle that Pardee wished to establish was that stimuli of diverse origins converged at a unique, crucial, biochemical decision point. If passed, a cell would be committed to continuing through the cell-cycle.

For a time, it was thought that passage beyond this point signified a commitment to execute a complete cellular division, and that it was the only physiological determinant of this progression. This has proven not to be the case, nor was it ever suggested by Pardee, who proposed only that it controlled re-entry to the cycle. The restriction point must be considered only as a point of commitment to enter S-phase, but this is still a very significant function that is now recognised to contribute not only to the integration of extracellular growth signals, but also to purely internal signals, particularly those related to differentiation and senescence. From this definition, it is reasonable to conclude that it is the de-repression of E2F that is the crucial step that constitutes this transition. CDK4-sponsored release of E2F from pRB may be an initial step, but it does not suffice. As described, phosphorylation of pRB by CDK4 may lead to the release and disinhibition of PP1, an antagonistic phosphatase, and the phosphorylation state of pRB becomes dependent on which of the two predominates. If mitogen stimulation continues, cyclin-D continues to be elevated, and CDK4 remains active. If mitogen stimulation abates, or a CDK4 inhibitor is induced, the phosphatase will prevail and E2F will be again sequestered. To this point, the process remains reversible, and the restriction point has not been passed.

Under these conditions, there will be some transcription of E2F targets, although this may be intermittent. Among these is *CCNE1*, the gene for one isoform of cyclin-E¹¹⁵. *CCNE2*, the second cyclin-E gene may also be under E2F regulation, but this has not yet been established conclusively^{§116}. In time, with continuing CDK4-dependent partial activation of E2F, production of cyclin-E will outpace its degradation, and activated CDK2 will enter the equation. Two properties of cyclin-E–CDK2 are of note at this point. Firstly, it is not subject to inhibition by a major class of CDK4 inhibitors, the p16-related CKIs. Thus, if activation of CDK4 had been being constrained by the presence of such inhibitors, but still had managed to rise to a level sufficient to allow the accumulation of cyclin-E, the inhibitors immediately lose any ability to constrain further progression. The second salient feature is that activation of CDK2 by ectopic expression of cyclin-E is sufficient to promote S-phase entry, and, most importantly, do so even in the presence of a non-phosphorylatable form of pRB²⁴¹. The inference therefore is that the only critical target of E2F may be cyclin-E. The production of other proteins from E2F-regulated genes may be rate-limiting for DNA synthesis, but it seems that even constitutive levels of expression are sufficient to allow its commencement.

While immune to inhibition by p16-related CKIs, CDK2 is subject to regulation by p21-related CKIs, in particular, p27. Cyclin-D1–CDK4 also binds and is inhibited by p27³⁸⁰, and an interesting dynamism exists in the inter-relationships among p16, p27, cyclin-E–CDK2, and cyclin-D1–CDK4. When p16-related inhibitors are absent, whatever p27 is present in the cell will bind cyclin-D1–CDK4 as it is produced, delaying the onset of pRB phosphorylation. However, once it starts, and cyclin-E–CDK2 begins to accumulate, it will do so in the absence of competition from p27. Furthermore, p27 is itself a CDK2 substrate, and when phosphorylated, becomes the subject of ubiquitin-directed proteolysis³⁸⁹, further enhancing CDK2 activity. Conversely, if p16-related inhibitors are present, such p27 as exists is free to inhibit the low levels of activated CDK2 that may be produced under these circumstances, and thus forestall the self-reinforcing accumulation of CDK2. The apparent induction of p16 upon pRB phosphorylation would contribute to this²³².

While the critical CDK2 target has not been identified, a strong candidate is CDC6, a component of the DNA replication licensing subsystem. CDC6 is an excellent in vitro substrate for cyclin-E–CDK2, with the same pattern of phosphorylation as is seen in vivo, and this phosphorylation is required for the

V

initiation of DNA synthesis¹⁷⁸. In serum-deprived cells, ectopically expressed CDC6, in conjunction with cyclin-E–CDK2, but not cyclin-A–CDK2, results in the commencement of DNA replication^{§53}.

Further pRB phosphorylation

Within the model scenario under consideration, the activation of CDK2 assures entry into S-phase, and synchronisation with the centrosomal division cycle. If these functions were considered insufficiently noteworthy, it has yet another role: further phosphorylation of pRB, probably mediated via the pRB C-terminal KXLKXL sequence⁴. Immediate CDK2 targets include S612 and T821. The significance of the first is unknown, but the second is thought to bring about a conformation change⁷⁸ that reduces the affinity of the small A/B pocket for LXCXE-bearing proteins, and probably causes dissociation of such complexes⁴²⁴. With their departure, other sites previously masked from the cyclin-D1–CDK4 complex docked at the C-terminus become available including S795, also a target of CDK2, and T826. Phosphorylation at the latter then renders S249 and T252 available to cyclin-D1–CDK4⁴²⁴. In the final step, cyclin-D1–CDK4 complexes can now dock via the vacant small A/B pocket, even if only transiently, and effect the phosphorylation of S807 and S811, inaccessible from the C-terminus. In consequence of these alterations, ABL is released and disinhibited whereupon it is thought to take part in the monitoring of genomic integrity in conjunction with ATM and p53¹⁹⁴. There is a functional parallel here with the simultaneous induction of ARF by E2F1 resulting in increased levels of p53.

Phosphorylation at all of the sites where it is seen in vivo has now been completed. Interestingly, it occurred in five stages, the same as the number of major pRB electrophoretic species discernible in Western blots of asynchronous populations⁷⁸. The functional consequences of these final phosphorylations have yet to be fully explored, and given the very large number of proteins that interact with pRB, this will be no small feat.

Maintenance of pRB phosphorylation

The reign of cyclin-E–CDK2 is relatively short-lived. By activating CDK2, cyclin-E has been the author of its own demise since its phosphorylation at T380 by CDK2 results in its degradation via ubiquitindirected proteolysis⁴⁰⁸. The preferred model has it that this phosphorylation causes the dissociation of cyclin-E from CDK2, rendering it subject to the ubiquitin-ligase function of CUL3³⁵⁰. Nevertheless, phosphorylation of pRB can be maintained as rising cyclin-A, another E2F1 target, continues to activate CDK2.

Dephosphorylation of pRB

This too comes to an end in metaphase, when cyclin-A also becomes a target of proteasomal degradation, here at the instigation of the cyclosome. Only then does the driving force behind pRB phosphorylation abate sufficiently to allow the opposing phosphatase any opportunity to reverse the process. Like its phosphorylation, the dephosphorylation of pRB is synchronised with the cell-cycle and appears to be incremental^{§319}.

Variations on the theme

Continuous cycling

The extent of dephosphorylation depends in large measure on the cellular context at the time. In particular, if mitogens are still present and p16-related inhibitors absent, cyclin-D1–CDK4 will still be active, although RAS stimulation of *CCND1* may only be operative in $G_2^{\$153}$. Not only will this prevent complete dephosphorylation of pRB by antagonising PP1 activity, it may modify PP1 directly through phosphorylation¹⁹⁷. In any case, cyclin-D1–CDK4 can only oppose PP1 with respect to sites that are substrates for both. Thus, the initial dephosphorylation may be limited to \$612 and \$821. However,

transient dephosphorylation of T826 may occur, and during the period when both T821 and T826 are dephosphorylated, pRB again has the capacity to interact via the small A/B pocket. Subsequent rephosphorylation of T826 by cyclin-D1–CDK4 may be insufficient to dissociate such a newly formed complex. One consequence of this that S249 and T252 may also be subject to dephosphorylation as access by cyclin-D1–CDK4 here depends on prior T826 phosphorylation and is hindered by B-pocket occupancy, unless, presumably, the occupant is cyclin-D1 itself. This raises a further distinction between the situation that pertains in cells released from mitogen deprivation and those cycling continuously. In the latter case, this mode of docking is available to cyclin-D1, whereas in the former, it is denied access by the presence of HDAC1 or its linking protein. Now, the tables are turned, and cyclin-D1 is in the position to prevent the recruitment of the deacetylase complex. In addition, S807 and S811 will be subject to phosphorylation of S795 probably suffices to prevent re-association between pRB and E2F.

In all probability then, in the continuing presence of mitogenic stimulation, all of the recognised means by which pRB constrains proliferation are disabled. This does not imply that such cells can cycle freely. Requirements of chromatin decondensation, E2F production, CDK2 activation, and DNA replication licensing must still be met. A change in cyclin-D1 status before the next passage through the restriction point would alter the situation markedly.

Inhibitory cytokines

Inhibitory cytokines have the capacity to prevent cellular proliferation even in the presence of mitogens. One of the better studied and understood of these is TGF β , a potent inhibitor of epithelial cell division. It has been found to operate through several signal transduction channels including SMAD^{®177}, MAPK¹⁵⁸, and PI3K¹⁷ subsystems, and several mechanisms of engendering cell-cycle arrest in G₁ have been identified. It depresses MYC transcription⁴¹⁴ and possibly via this, reduces cyclin-D1 expression²⁰³ and induces p15^{CDKN2B333}, an inhibitor of CDK4; it induces p21^{CDKN1A293}, an inhibitor of CDK2; it decreases the activity of both CDC25A^{164 165} and CAK²⁷¹, contributing to the inactivation of existing CDKs; and it may interfere with the translation of CDK4 mRNA²⁵⁷. These results suggest very strongly that modulation of the pRB subsystem is an important component of the growth inhibitory effect of TGF β .

Cellular senescence

Observations by Leonard Hayflick^{155 ®339} revealed that cultured human fibroblasts could sustain only a limited number of population doublings prior to undergoing a phenotypic change and ceasing to proliferate. In contrast, cultures derived from tumours appeared to be immortal. This established as the norm the concept of cellular, or replicative, senescence, an inherent proliferative limitation, and its defeat as a feature of neoplastic transformation. Its existence implies a cellular memory that survives mitosis, but the molecular basis of this memory is still a subject of experiment and debate.

An extremely attractive candidate mechanism involves the maintenance of the distinctive base sequences found at the termini of chromosomal DNA, known as telomeres^{®359}. The normal process of DNA replication cannot access these final bases since new bases are appended at the trailing edge of the polymerase as it proceeds along the template strand. When it reaches the terminus and dissociates, the single-stranded sequence to which it had been binding must remain unreplicated. This is a progressive process, and in most tissues, telomeres are seen to shorten with each round of DNA synthesis¹¹. In some tissues however, the enzyme telomerase is expressed that has the capacity to concatenate telomere

sequences onto these termini using an inherent RNA template; it is, therefore, a reverse-transcriptase, the first found in eukaryotes. Such tissues include the germ-line and those with an extremely high cellular turnover rate, such as haematopoietic cells and cells of the intestinal lining. Aberrant expression of telomerase is also a feature of cancer cells¹⁵⁴. An alternative explanation of this cellular memory may involve the simple mechanism of gradual accumulation of a regulatory protein due to a slight bias in favour of expression over degradation¹¹⁸. It is also entirely possible, and suggested by many^{181 270}, that several independent mechanisms of replicative senescence exist, and that the relative importance of these may differ among cell-types.

While the details of replicative senescence remain elusive, a number of critical elements have been characterised. These include the telomerase reverse-transcriptase, TERT⁶⁶, ATM²⁵³, p53²⁷, CDC25A³²⁴, CDK4³¹³, p16⁷⁹, p21³²⁷, p27¹⁰, and pRB¹⁹⁹. There is thus very strong circumstantial evidence that modulation of pRB subsystem activity, probably through altered phosphorylation, is involved in the regulation of senescence.

Viral infection

Viruses are able to carry out their vital and defining functions utilising a genome of tens of genes, in stark contrast to all other classes of organism, where thousands to hundreds of thousands are more usual. They are able to do so by usurping cellular regulation and perverting the host cell metabolism to their own ends. It is therefore of great interest that in many DNA and retroviruses, a large proportion of the reduced viral genome is dedicated to the nullification of the pRB subsystem. Typically, this is achieved by carrying a gene that encodes a protein that binds to the pRB small A/B pocket via an LXCXE motif. This is often portrayed as a means of defeating the pRB-dependent constraint on cellular proliferation, but there is no reason why this should be required for viral infection to proceed, nor is it sufficient to achieve this. To do so would require that the binding of a viral protein to pRB interfered with the constraint of E2F activity. This is not the case, however, as it is insufficient to disrupt pRB-E2F complexes⁴²² and furthermore, the ability of pRB to bind such proteins and to impose a cell-cycle arrest are functionally separable^{44 65}.

What then is the function served, from the viewpoint of the virus, or defeated, from the viewpoint of the cell, by such binding? By binding in the small A/B pocket, a viral protein will prevent the recruitment of the histone deacetylase complex to gene promoters and so diminish the ability of pRB to repress transcription of genes used in the synthesis of DNA, something beneficial to the virus. When bound there, it will also deny this docking mode to cyclin-D1, and thereby prevent phosphorylation of \$807 and \$811, as these are not accessible from the C-terminal docking domain⁴²⁴. In consequence, ABL will not dissociate from pRB²⁰⁰ and it will remain inhibited⁴⁰². One substrate of the ABL kinase is MDM2, and its phosphorylation prevents it binding to, and directing the degradation of p53¹²¹. Therefore, on-going inhibition of ABL by pRB may contribute to the suppression of the p53-dependent apoptotic response that could otherwise be triggered during the infection of mitogen-stimulated cells. ABL can also promote apoptosis via p73⁶³⁹⁴, and this effect is also nullified by the continuing association of ABL with pRB. While the suppression of apoptosis may be required in order to give the infecting virus the opportunity to replicate, this interpretation is difficult to reconcile with the general observation that expression of a viral pRB-binding protein such as E7³⁶¹, E1A³⁷⁵, or large-T⁵², promotes rather than inhibits apoptosis, especially where p53 is not disabled by an additional viral protein³⁷⁵.

Complications

As noted above, the model scenario presented incorporates many simplifying assumptions, particularly regarding the multiplicity of related proteins of each type involved. At last count, there are three pRB-related pocket proteins^{®49}, six E2F transcription factors^{®382} that may dimerise with one of three DP co-factors^{®418}, three D-cyclins^{®342}, two E-cyclins²⁹⁸, two A-cyclins^{®26}, perhaps four CDKs implicated in G_1 –S transition regulation^{®142}, four CKIs related to p16^{®318}, and three related to p21^{®277}. This discussion could not be complete without some indication of the distinctions among these.

Generally, depending on their lineage, cells express cyclin-D2 and either cyclin-D1 or cyclin-D3. All contain the LXCXE motif {Table 3} and all are thought to bind pRB. All can bind CDK2, CDK4, and CDK6, and all can activate them, except in the case of cyclin-D1–CDK2¹⁴⁸. This may well account for the biphasic response seen with ectopic expression of cyclin-D1, wherein a small increment of expression accelerates S-phase entry, but a larger increment causes a G_1 arrest. In the first instance, increased CDK4 activity would cause the acceleration, but when the available CDK4 is saturated, additional cyclin-D1 would act as a competitive inhibitor of CDK2¹⁰⁹, preventing its activation by cyclin-E.

E2F1, -2, and -3 associate with pRB, rather than p107 or p130; have an N-terminal domain that binds cyclin-A, but not cyclin-E, that is essential for phosphorylation of the DP co-factor; and are exclusively nuclear. E2F4 and -5 associate with p107 and, particularly so in the case of E2F5, p130. An association between E2F4 and pRB has also been reported commencing at the G_1 -S transition²⁵⁹ and in the growth-suppressive response to TGF β^{231} . E2F4 is the predominant form found in quiescent cells, when it is essentially nuclear, this localisation depending on DP2, and p107 or p130, but not pRB. As cells approach S-phase, it becomes increasingly cytoplasmic²³⁵, and when engineered to remain nuclear, is functionally indistinguishable from E2F1²⁶⁹. E2F6 has no transactivation domain or pocket-protein-binding domain and may be a natural inhibitor of the other E2Fs³⁶.

The CKI p15^{CDKN2B} has a more polarised tissue-dependent expression than p16, being present at high levels in lung, but scarce or absent in kidney. Also unlike p16, its expression is not regulated by pRB, nor is its mRNA level different in proliferating versus quiescent cells, but it does increase some thirty-fold in response to TGF β treatment of epithelial cells¹³³. Like *CDKN2A*, it has been reported to be subject to transcriptional silencing through promoter methylation¹⁴⁶. The p18^{CDKN2C} inhibitor has greatest expression in skeletal muscle, and may³⁷⁸ be a better inhibitor of CDK6 than of CDK4^{130 282}. The p19^{CDKN2D} inhibitor has expression linked to the cell-cycle that peaks at the G₁–S transition and then declines until mitosis.

Protein levels of the pRB-relatives, p107 and p130 vary cell-cyclically, and at least in the case of p130, this is due to alteration of protein translation or stability as the mRNA level stays essentially constant. Interestingly, their patterns of expression are mutually inverted. Levels of p107 are low in quiescent cells as a consequence of repression via E2F4, and rise during G₁, while those of p130 are high in quiescent cells and low during proliferation³⁵¹. Both are subject to cell-cyclical phosphorylation, and while both are substrates for CDK4, neither is a substrate for CDK2²³. Indeed, they are either inhibitors of CDK2^{38 410}, or influence its substrate specificity¹³⁹. Consistent with this, phosphorylation of both begins in mid-G₁ coincidently with CDK4 activation⁴¹². In the case of p130, this proceeds rapidly and completes before that of pRB²⁵².

5 The pRB subsystem and cancer

The pRB-related pocket proteins

While homozygous mutant *Rb1* mice die *in utero* with severe developmental flaws, the corresponding heterozygotes are viable, but spontaneously develop pituitary tumours^{\$157}. In the analogous human situation, it is of course predisposition to retinoblastoma that is seen. It is widely reported that despite having been cured of their initial tumour, survivors of hereditary retinoblastoma are at increased risk of developing second and subsequent primary tumours^{2 3 63 75 80 85 260 404}, notably osteosarcoma¹³⁴, and often die during childhood or adolescence as a result. While there may be an iatrogenic component to this, as with increased bladder leiomyosarcoma after cyclophosphamide treatment^{190 266}, the major effect is thought to be due to the functional loss of pRB upon mutation of the intact allele in other tissues. The nature of subsequent primary tumours is probably a joint reflection of the vulnerability to mutation, and the importance of the tumour-suppressor function of pRB in different tissues. Among tumours other than, or as sequelae of retinoblastoma, alterations of RB1 or expression of pRB are also widely reported, instances being in breast carcinoma¹²⁵, chodrosarcoma¹⁴, glioma¹⁴⁰, small-cell lung cancer⁴²¹, non-smallcell lung cancer¹²⁶, oesophageal squamous cell carcinoma¹⁸⁷, pituitary adenoma³⁴⁹, hepatocellular carcinoma¹⁶³, osteosarcoma²⁴, thymic carcinoma¹⁵², and head and neck squamous cell carcinoma²¹⁵. In addition, aberrant over-expression of pRB has been reported in bladder carcinoma²⁵ and hepatocellular carcinoma¹⁶³.

In contrast, the other members of the pRB-related pocket protein family appear to be less important in tumour suppression. *Rbl1*-null mice are viable, and are reported to be either phenotypically normal^{§226}, or growth-impaired and exhibiting myeloid hyperplasia^{§222}. A similar disparity exists for *Rbl2*-null mice, with both apparent normality^{§51} and embryonic lethality^{§223} being reported. It has been suggested that the particular genetic backgrounds of the differing mouse strains used in these experiments may account for this phenomenon. Nevertheless, even in the more permissive C57BL/6 strain the double, *Rbl1/Rbl2* homozygous knockout results in early neonatal death^{§51}^{®§127}, indicating that they may have overlapping abilities to perform a function critical for survival. Alterations affecting p130 have been reported in a few human tumour types, including vulvar squamous cell carcinoma⁴²³, nasopharyngeal carcinoma⁵⁰, Burkitt's lymphoma⁴⁸, and small-cell lung cancer¹⁴¹. Alterations affecting p107 appear to be very rare³⁶⁷.

The D-cyclins

The oncogenic potential of cyclin-D1 is well established^{®73}, indeed it was the search for an 11q13 oncogene associated with BCL and parathyroid adenoma that led to its identification³¹⁷. In the case of BCL, it was found that chromosomal translocation resulted in aberrant expression of cyclin-D1, not normally produced by B or T lymphocytes. Moderate over-expression has been reported in many carcinomas including hepatocellular (58%)¹⁸², lung non-small-cell (37%)⁴¹⁵, head and neck squamous cell (48%)²⁰, and those of the breast (35%)⁴³⁰, and bladder (31%)²⁸⁸.

Over-expression of cyclin-D2 has been reported in a number of myeloid malignancies⁶¹, sometimes as a consequence of BCR–ABL activity⁶⁰. It is seen in male germ-cell tumours¹⁵⁶; and in gastric cancer, it correlates with progression, while over-expression of cyclin-D1 does not³⁶⁶. Conversely, loss of expression due to promoter methylation has been reported in breast carcinoma⁸⁷.

Chromosomal translocations resulting in the aberrant expression of cyclin-D3 have been found in a subset of multiple myeloma cell-lines and tumours³³⁸ and *CCND3* has been found to be amplified in a

V

glioblastoma²⁰⁹. Over-expression has been reported in pancreatic adenocarcinoma¹⁷⁴, non-Hodgkin's lymphoma²⁶², and breast carcinoma²¹.

The cyclin-dependent kinases

There is no strong case to support a direct role for CDK2 in tumorigenesis, although some overexpression and increased activity have been reported^{196 246 256}. While the same is true for CDK6²¹⁶, the corresponding case for CDK4 is very substantial. A germ-line *CDK4* R24C mutation that prevents binding and inhibition by p16 has been found in melanoma⁴⁰⁶, and mice engineered to be homozygous for this allele spontaneously develop multiple tumours³⁵², particularly invasive melanoma³⁵³. A mutation in the corresponding position in CDK6 has been sought, but not found³⁴⁰. *CDK4* is amplified in cervical carcinoma⁴⁷, osteosarcoma⁴⁰⁰, breast carcinoma¹³, glioblastoma³¹⁶, and Ewing's sarcoma²¹²; and CDK4 is over-expressed in oral and pharyngeal carcinoma²⁰⁶, glioblastoma²¹⁶, cervical carcinoma⁴⁷, breast carcinoma¹³, hepatoblastoma¹⁹⁵, and ovarian carcinoma²⁴⁸.

The cyclin-dependent kinase inhibitors

p16 and relatives

Three proteins structurally similar to p16^{CDKN2A} and with overlapping function are known: p15^{CDKN2B}, p18^{CDKN2C}, and p19^{CDKN2D}. Assessing the contributions toward tumour suppression of the closely-linked 9p21 genes *CDKN2A* and *CDKN2B* and their encoded proteins ARF, p16, p15, and its p10³⁸⁴ and p15.5¹¹³ splice variants is no simple task. Co-deletion of the genes is commonly reported, as is simultaneous transcriptional silencing due to methylation, but combined inactivation by different mechanisms is also known. In consequence, it is difficult to determine if only one, either, or both are the functional targets, and what, if any, tissue specificity there may be among these alternatives.

CDKN2A is undoubtedly a tumour-suppressor gene of stature rivalling *TP53*. It seems likely that the two proteins it encodes, p16^{®104} and ARF, contribute independently toward this^{®341}. This is perhaps best demonstrated by the phenotypes of mice engineered to be functionally deficient in each of these proteins without compromise of the function of the other. When ARF was selectively ablated, mice displayed a cancer-prone phenotype, with spontaneous tumour development in 19 of 24 animals, the most common type being sarcoma^{\$186}. Similar results were seen for p16, with spontaneous tumour development in 10 of 39 homozygotes, with the predominant type being sarcoma, while lymphoma and melanoma were also seen^{\$336}. Interestingly, a melanoma kindred has been reported wherein two members are homozygous for a non-functional *CDKN2A* allele: one has melanoma, the other is unaffected¹²⁹. Clearly, while loss of p16 function may predispose toward the development of melanoma, it does not guarantee it. Other genetic or environmental factors must be involved.

In contrast, the *Cdkn2b* knockout mouse has a relatively mild phenotype, with an 8% tumour incidence after 18 months^{§220}. Nevertheless, there is probably a sufficient weight of evidence to suggest that it is a tumour-suppressor in its own right, albeit relatively minor. In particular, homozygous deletion of *CDKN2B*, but not *CDKN2A* has been reported in bladder cancer⁸⁴, multiple myeloma³⁷², and non-Hodgkin's lymphoma³⁴⁵; and methylation of *CDKN2B*, without alteration of p16 expression is almost universal in adult acute myelogenous leukaemia, and very common in adult acute lymphocytic leukaemia, paediatric acute myelogenous leukaemia, and in glioma^{145 146}. This same pattern is seen in radiation-induced murine T-cell lymphomas^{§245}. Other data supports a joint role for these tumour-suppressors. Simultaneous functional loss of p15 and p16 may be important in the development of T-cell acute lymphoblastic leukaemia^{172 287}, glioma³⁴⁸, and multiple myeloma²⁸⁰. In oesophageal squamous

carcinoma, promoter methylation of *CDKN2A* is seen either alone, or in combination with methylation of *CDKN2B*, but the latter rarely occurs alone⁴¹³.

The p18^{Cdkn2c} knockout mouse exhibited pituitary hyperplasia leading to the formation of primary tumours that were fatal due to their large size. They appeared to have little invasive or metastatic propensity however. Other tumour types were also seen, including lymphoma, and renal, adrenal and testicular tumours^{§220}. There is evidence to support a tumour-suppressor function for p18 in humans, particularly in multiple myeloma²¹⁰, and perhaps acute lymphoblastic leukaemia¹⁷¹, meningioma²⁹, and breast cancer, where a *CDKN2C* mutation leading to a p18 unable to bind CDK6 has been reported²¹⁷.

An extensive study of human haematopoietic malignancies found only very few instances of p19 alteration⁷⁷, nor is it implicated in other tumour types. The phenotype of the p19-deficient mouse supports the hypothesis that it is not a tumour-suppressor, but rather, regulates testicular development^{§429}.

p21 and relatives

The initial report of the p21^{*Cdkn1a*}-null mouse^{§62} concluded that while aberrations of G₁-arrest were evident in cell cultures, there was no significant disposition toward spontaneous tumour formation by six months of age. However, when such mice were followed for an extended period it was found that spontaneous tumours did arise at a mean age of sixteen months, the predominant type being haematopoietic^{§247}. Among human tumours, mutations of *CDKN1A* are known, but in general, are infrequent³⁷⁶. Among 81 gliomas²³³, 28 pituitary adenomas¹⁶⁸, and 20 gastric carcinomas²⁹⁶, no mutation was detected by PCR-SSCP or sequencing. Intragenic deletions or point mutations have been found in adrenocortical adenoma¹⁶⁷, 5 of 40 thyroid carcinomas³⁴³, 3 of 28 brain tumours³⁸⁵, and 7 of 102 tumours of assorted types³⁹⁹. Interestingly, a polymorphism that may affect the ability of p21 to interact with PCNA was identified in 42 of 50 cases of oesophageal squamous cell carcinomas in contrast to only 8 of 50 putatively normal individuals¹⁶.

The most evident characteristic of the $p27^{Cdkn1b}$ knockout mouse it that it is significantly larger than its wild-type litter-mates, an apparent consequence of increased general cellular proliferation resulting in enlarged organs^{§96} §276. Spontaneous development of pituitary tumours is seen, a feature also present in the phenotype of *Cdkn2c*-null^{§105} and *Rb1*+/- animals, suggesting an important functional overlap in this tissue. In human solid tumours, reduced expression of p27 is frequently associated with rapid tumour progression and poor prognosis¹⁶⁰ ²⁴⁹ ³²⁸, while the converse may be true in some lymphomas^{®261}. *CDKN1B* alterations are only rarely seen in tumours¹⁸⁹, however a mutation with simultaneous loss of heterozygosity at 12p13 has been found in 1 of 36 breast carcinomas³⁵⁶.

Mice lacking *Cdkn1c* had cleft palates and skeletal deformities and usually died neonatally. In the ~10% of instances where they survived beyond weaning, their growth was markedly retarded and developmental flaws in reproductive organs become apparent in both males and females. While no increased cancer predisposition was detected during the five months of the study, increased incidence with later onset cannot be excluded^{§365}. Mutation of *CDKN1C* has not been reported in human tumours, but loss of expression and loss of heterozygosity at 11p15.5 has been seen in thyroid¹⁷⁶, bladder²⁸⁹, and hepatocellular¹⁷³ carcinomas, and in pancreatic adenocarcinoma¹⁷⁵. *CDKN1C* is a strong candidate for the Beckwith-Wiedemann syndrome gene³⁷, a disease in which there is a mild predisposition toward cancer, particularly Wilms' tumour. While mutation has been found in some cases¹³⁸, conclusive proof is

proving difficult to obtain, not least because the implicated locus also contains *IGF2*, an equally viable candidate, and both are subject to parental imprinting¹⁷⁹.

The E2F transcription factors

The E2F transcription factors are involved in both the induction and repression of genes, and mediate both proliferation and apoptosis, hence, it is not possible to predict, a priori, whether their normal role is tumour-suppressive, excessive function oncogenic, neither, or even both for different E2F types or under different circumstances^{@416}. The very real nature of this difficulty is demonstrated by the case of E2F1, one of the better studied E2Fs. *E2F1* is amplified in the HEL erythroleukaemia cell-line³²¹, E2F1 was over-expressed in 24 of 26 small-cell lung cancers⁹⁰, and its expression correlated with invasiveness in head and neck carcinoma⁴²⁶, all suggesting a role in tumorigenesis. However, the *E2f1*-null mouse has an elevated rate of spontaneous tumour formation, particularly reproductive tract sarcomas^{§419}, suggesting a role in tumour suppression. How these effects come about is unknown, but it seems unlikely to involve interaction with pRB since no mutations in the pRB interaction domain of E2F1 were found in a survey of 406 human tumours²⁷⁴, and concurrent ablation of *E2f1* reduces tumour incidence and increases the longevity of *Rb1*+/- heterozygous mice^{§417}.

E2F4 appears to influence tumour development significantly, seemingly due to the presence of an unstable $(CAG)_{13-18}$ trinucleotide repeat that encodes a polyserine tract. Alterations have been found here in various digestive^{250 330 355 409 428} and haematological²⁰⁵ tumours. It has been suggested that at least in some instances, this instability is due to a mutation within *MSH3*, whose encoded protein plays a prominent role in DNA mismatch repair¹⁶⁹.

There is little if any evidence to suggest a role for the other E2F transcription factors in tumorigenesis, with the possible exception of E2F5, which has been found to be amplified and over-expressed in some breast cancers³⁰⁶.

6 The pRB subsystem and melanoma

The genetic analysis of hereditary tumour kindreds is a rich source of information pertinent to the molecular aetiology of cancer, and this is the case with melanoma^{®32 ®39}. In some syndromes, melanoma occurs as the only, first, or predominant tumour type, notably when the disease phenotype is linked to $9p21^{137 392}$, $12q14^{354}$, or $1p36^{18}$. Here, the implicated genes are, respectively, $CDKN2A^{100 312}$, $CDK4^{431}$, and possibly $CDC2L1^{279}$ or even $PINK1^{387}$, but probably not $TP73^{207 329 383}$. In others, melanoma is just one component of a more complex cancer predisposition as in xeroderma pigmentosum²⁰⁴, with multiple linkage groups; hereditary retinoblastoma^{9 22 260 381}, implicating *RB1*; type I multiple endocrine neoplasia²⁸³, implicating *MEN1*; multiple hamartoma syndrome, implicating *PTEN*⁴²; and melanoma-astrocytoma syndrome, implicating *CDKN2A* exon $1\beta^{312}$. Among these, alterations in *RB1*, *CDKN2A*, and *CDK4* may be expected to affect the pRB subsystem directly^{®131}.

Most interestingly, extensive surveys have failed to provide any evidence for a role for CDK2³⁹¹ or CDK6³⁴⁰ in the tumorigenesis of melanoma, and there appears to be no report of amplification or mutation of *CCNE1*. Deregulated phosphorylation of pRB, per se, may therefore be insufficient to predispose toward melanoma. This hints that the critical role for pRB is modulated by CDK4, but not CDK2, and that it may be inconsequential in tissues where the dominant cyclin-D-associated CDK is CDK6. Heretical though it may seem, this is consistent with the possibility that the ability of pRB to repress E2F activity may not be the critical aspect. The disparity between incidences of *CDK4* and *CDKN2A* mutations in hereditary melanoma¹²² further suggests that there may be partial functional

overlap between CDK4 and another kinase less susceptible to p16 inhibition, or that some function other than inhibition of CDK4 may also be involved.

Hence, suspicion must fall upon ARF as a further, possibly subordinate, contributor to melanoma tumorigenesis. Fitzgerald et al. reported finding no *CDKN2A* mutations that would alter ARF, but not p16, in 33 consecutive melanoma patients who had one or more first or second-degree affected relations¹⁰⁰, nor were any sequence alterations found in *CDKN2A* exon 1β among ten 9p21-linked melanoma kindreds by Fargnoli et al.⁹³. However, one melanoma-astrocytoma syndrome kindred has been reported in which there is a germ-line mutation in *CDKN2A* exon 1β. More data are required before a definitive assessment can be made of what role, if any, is played by ARF in the tumorigenesis of melanoma.

The hypothesis has been raised that it is the integrity of the pRB subsystem as a functional whole that protects against melanoma, and hence, failure of any critical component predisposes toward it. The strongest evidence to support this is the common finding that in melanomas, there is very often a functional defect in a single element of the subsystem, generally p16, pRB, or CDK4^{19 243 392}. Nevertheless, multiple flaws have been found in individual cases, with amplification of CCND1 or mutation of CDK4 being seen in conjunction with CDKN2A deletion^{315 392}. Clearly, pRB cannot be the only significant target of alterations affecting cyclin-D1 or CDK4, and some additional advantage is conferred by their presence. The basis for this advantage is unknown, but the most probable explanation is that further, as yet uncharacterised, substrates for cyclin-D1–CDK4 exist. The rationale for this is that the implicated CDK4 mutation involves its escape from inhibition by p16. For this to be significant in a cellular context where p16 or pRB are absent, the necessity of a substrate other than pRB, and an inhibitor other than p16 is implied. Potentially, where p16 is absent, some degree of constraint may still operate through induction of p15, unless CDK4 is impervious to this. Furthermore, if the amplification of cyclin-D1 were serving some purpose other than increasing CDK4 activity, then it could be expected to act as an inhibitor of CDK2 activation, hindering, rather than helping proliferation. As to the identity of such a substrate, nothing is known with certainty. There is one report of a cytoplasmic p88 CDK4 substrate²¹¹, but this does not appear to have been confirmed. It is also possible that it corresponds to a product of caspase cleavage of pRB. The cited report relies on the lack of recognition of p88 by the pRB monoclonal antibody employed to exclude this, but it is quite possible that upon cleavage, the necessary epitope is lost or its conformation modified. The particular antibody is not defined sufficiently well in the report to establish if this may be the case. While the principal caspase degradation products of pRB are p44 and p68, there is evidence of the early production of larger, and the subsequent production of smaller products⁹⁵.

References

1 2	Aberdam E, Bertolotto C, Sviderskaya EV, de Thillot V, Hemesath TJ, Fisher D Involvement of microphthalmia in the inhibition of melanocyte lineage differentia <i>Journal of Biological Chemistry</i> Abramson DH, Ellsworth RM and Zimmerman LE	E, Bennett DC, Ortonne ation and of melanogen 273 :19560–5	 JP and Ballotti R esis by agouti signal protein 1998
3	Nonocular cancer in retinoblastoma survivors <i>Transactions - American Academy of Ophthalmology & Otolaryngology</i> Abramson DH, Ronner H Land Ellsworth RM	81 :454–7	1976
	Second tumors in nonirradiated bilateral retinoblastoma American Journal of Ophthalmology	87 :624–7	1979
4	Adams PD, Li X, Sellers WR, Baker KB, Leng X, Harper JW, Taya Y and Kaelin Retinoblastoma protein contains a C-terminal motif that targets it for phosphory <i>Molecular and Cellular Biology</i>	n WG Jr lation by cyclin-cdk con 19 :1068–80	nplexes 1999
5	Adnane J, Shao Z and Robbins PD Cyclin D1 associates with the TBP-associated factor TAF(II)250 to regulate Sp Opcogene	1-mediated transcriptior 18 :239–47	ו 1999
6	Akiyama T, Ohuchi T, Sumida S, Matsumoto K and Toyoshima K Phosphorylation of the retinoblastoma protein by cdk2	80 -7000 4	1000
7	al-Aoukaty A, Rolstad B and Maghazachi AA Recruitment of pleckstrin and phosphoinositide 3-kinase gamma into the cell m after activation of NK cells with chemokines	embranes, and their as	sociation with G beta gamma
	Journal of Immunology	162 :3249–55	1999
8	Albanese C, D'Amico M, Reutens AT, Fu M, Watanabe G, Lee RJ, Kitsis RN, H Thimmapaya B and Pestell RG	lenglein B, Avantaggiati	i M, Somasundaram K,
0	Activation of the cyclin D1 gene by the E1A-associated protein p300 through Al Journal of Biological Chemistry	P-1 inhibits cellular apo 274 :34186–95	ptosis 1999
9	Cutaneous melanoma and bilateral retinoblastoma	22.1001 1	1000
10	Alexander K and Hinds PW	23 :1001–4	1990
	Requirement for p27(KIP1) in retinoblastoma protein-mediated senescence	21 -2616 21	2001
11	Allsonn RC, Chang E, Kashefi-Aazam M, Rogaev El, Piatvszek MA, Shav JW a	21.3010-31 and Harley CB	2001
	Telomere shortening E, radical Addata M, regady E, radyozet M, ondy over Everymental Call Research	220 ·194_200	1005
12	Alt JR Cleveland JI Hannink M and Diebl JA	220.134-200	1990
	Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D Genes and Development	1-dependent cellular tra 14 :3102–14	nsformation 2000
13	An HX, Beckmann MW, Reifenberger G, Bender HG and Niederacher D		
	Gene amplification and overexpression of CDK4 in sporadic breast carcinomas American Journal of Pathology	is associated with high 154 :113–8	tumor cell proliferation 1999
14	Asp J, Inerot S, Block JA and Lindahl A Alterations in the regulatory pathway involving p16, pRb and cdk4 in human ch Journal of Orthopaedic Research	ondrosarcoma 19 :149–54	2001
15	Baeg GH, Matsumine A, Kuroda T, Bhattacharjee RN, Miyashiro I, Toyoshima The tumour suppressor gene product APC blocks cell cycle progression from G	K and Akiyama T 60/G1 to S phase	1005
16	Bahl R, Arora S, Nath N, Mathur M, Shukla NK and Ralhan R	14.5016-25	1995
	Novel polymorphism in p21(waf1/cip1) cyclin dependent kinase inhibitor gene:	association with human 19 :323–8	esophageal cancer 2000
17	Bakin AV, Tominson AK, Bnowmick NA, Moses HL and Arteaga CL Phosphatidylinositol 3-kinase function is required for transforming growth factor and cell migration	beta-mediated epitheli	al to mesenchymal transition
10	Journal of Biological Chemistry	275 :36803–10	2000
18	Mapping the gene for hereditary cutaneous malignant melanoma-dysplastic ner New England Journal of Medicine	vus to chromosome 1p 320:1367–72	1989
19	Bartkova J, Lukas J, Guldberg P, Alsner J, Kirkin AF, Zeuthen J and Bartek J The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in m	nelanoma pathogenesis	1006
20	Bartkova J, Lukas J, Muller H, Strauss M, Gusterson B and Bartek J Abnormal patterns of D-type cyclin expression and G1 regulation in human hea	id and neck cancer	1990
21	Cancer Research Bartkova J, Zemanova M and Bartek J	55 :949–56	1995
	Abundance and subcellular localisation of cyclin D3 in human tumours International Journal of Cancer	65 :323–7	1996
22	Bataille V, Hiles R and Bishop JA Retinoblastoma, melanoma and the atypical mole syndrome <i>British Journal of Dermatology</i>	132 :134–8	1995
23	Beijersbergen RL, Carlee L, Kerkhoven RM and Bernards R Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes	0 .1240 52	1005
24	Benassi MS, Molendini L, Gamberi G, Ragazzini P. Sollazzo MR. Merli M. Asp	J, Magagnoli G. Ballade	elli A, Bertoni F and Picci P
	Alteration of pRb/p16/cdk4 regulation in human osteosarcoma International Journal of Cancer	84 :489–93	1999
25	Benedict WF, Lerner SP, Zhou J, Shen X, Tokunaga H and Czerniak B		
	Level of retinoblastoma protein expression correlates with p16 (MTS-1/INK4A/C Oncogene	CDKN2) status in bladde 18 :1197–203	er cancer 1999

26	Blanchard JM		
	Cyclin A2 transcriptional regulation: modulation of cell cycle control at the G1/S	transition by periphera	l cues
	Biochemical Pharmacology	60 :1179–84	2000
27	Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D and Wyllie F	n of cellular senescenc	9
	Oncogene	13 :2097–104	1996
28	Bookstein R, Lee EY, To H, Young LJ, Sery TW, Hayes RC, Friedmann T and I	Lee WH	
	Human retinoblastoma susceptibility gene: genomic organization and analysis of	of heterozygous intrage	nic deletion mutants
20	Proceedings of the National Academy of Sciences of the USA Restrom I. Mover Duttlitz R. Wolter M. Blogshke R. Woher D.C. Lighter R. Johim	85:2210–4	1988 Deifenherger C
29	Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF). C	DKN2B (p15(INK4b)).	and CDKN2C (p18(INK4c))
	in atypical and anaplastic meningiomas	·····//,	
	American Journal of Pathology	159 :661–9	2001
30	Bouchard C, Thieke K, Maier A, Saffrich R, Hanley-Hyde J, Ansorge W, Reed S	S, Sicinski P, Bartek J a	ind Eilers M
	EMBO Journal	18 :5321–33	1999
31	Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ and Kouzarides T		
	Retinoblastoma protein recruits histone deacetylase to repress transcription		(000
22	Nature Prosses de Deillerete P. Avril ME. Chempret A and Demonsis E	391 :597–601	1998
52	Genetic and environmental factors in cutaneous malignant melanoma		
	Biochimie	84 :67–74	2002
33	Buyse IM and Huang S		
	In vitro analysis of the E1A-homologous sequences of RIZ	71.6200_3	1007
34	Buyse IM Shao G and Huang S	11.0200-0	1551
•	The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an ep	itope with the adenoviru	us E1A protein
	Proceedings of the National Academy of Sciences of the USA	92 :4467–71	1995
35	Canote R, Du Y, Carling T, Tian F, Peng Z and Huang S		
	Oncology Reports	9 :57–60	2002
36	Cartwright P, Muller H, Wagener C, Holm K and Helin K		
	E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent trans	scription	(000
27	Oncogene	17 :611–23	1998
57	Oppositely imprinted genes p57(Kip2) and igf2 interact in a mouse model for Be	eckwith-Wiedemann sy	ndrome
	Genes and Development	13 :3115–24	1999
38	Castano E, Kleyner Y and Dynlacht BD		
	Dual cyclin-binding domains are required for p107 to function as a kinase inhibit Molecular and Cellular Biology	Itor 18 :5380_91	1008
39	Castellano M and Parmiani G	10.0000-01	1550
	Genes involved in melanoma: an overview of INK4a and other loci.		
	Melanoma Research	9 :421–32	1999
40	Cavanaugh AH, Hempel WM, Taylor LJ, Rogalsky V, Todorov G and Rothblum Activity of RNA polymerase I transcription factor LIBE blocked by Rb gene produced	i LI uct	
	Nature	374 :177–80	1995
41	Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murp	hree AL, Strong LC and	d White RL
	Expression of recessive alleles by chromosomal mechanisms in retinoblastoma	305.770 94	1092
42	Celebi JT, Shendrik I, Silvers DN and Peacocke M	303.779-04	1905
	Identification of PTEN mutations in metastatic melanoma specimens		
	Journal of Medical Genetics	37 :653–7	2000
43	Chan HM, Krstic-Demonacos M, Smith L, Demonacos C and La Thangue NB		
	Nature Cell Biology	3 :667–74	2001
44	Chan HM, Smith L and La Thangue NB		
	Role of LXCXE motif-dependent interactions in the activity of the retinoblastoma	a protein	0004
45	Chon CE Chon X Dai K Chon DL Bilov D Land Lao WH	20:6152-63	2001
40	A new member of the hsp90 family of molecular chaperones interacts with the r	retinoblastoma protein o	during mitosis and after heat
	shock	·····	9
10	Molecular and Cellular Biology	16 :4691–9	1996
46	Chen GC, Guan LS, Yu JH, LI GC, Chol-Kim HR and Wang ZY Rh-associated protein 46 (RhAp46) inhibits transcriptional transactivation media	ated by BRCA1	
	Biochemical and Biophysical Research Communications	284 :507–14	2001
47	Cheung TH, Yu MM, Lo KW, Yim SF, Chung TK and Wong YF		
	Alteration of cyclin D1 and CDK4 gene in carcinoma of uterine cervix	166:100 206	2001
48	Cinti C. Leoncini L. Nvongo A. Ferrari F. Lazzi S. Bellan C. Vatti R. Zamparelli A	A. Cevenini G. Tosi GM	. Claudio PP Maraldi NM
	Tosi P and Giordano A		
	Genetic alterations of the retinoblastoma-related gene RB2/p130 identify differe	ent pathogenetic mecha	nisms in and among Burkitt's
	iymphoma subtypes American Journal of Pathology	156 :751–60	2000
49	Classon M and Dyson N		*
	p107 and p130: versatile proteins with interesting pockets	664 405 17	0004
50	Experimental Cell Research	264:135–47	2001
50	Mutations in the retinoblastoma-related gene RB2/p130 in primary nasobharvno	geal carcinoma	
	Cancer Research	60 :8–12	2000

51	Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N, Harlow E, H Shared role of the pPB related p130 and p107 proteins in limb development	Beach D, Weinberg RA	and Jacks T
	Genes and Development	10 :1633–44	1996
52	Conzen SD, Snay CA and Cole CN Identification of a novel antiapoptotic functional domain in simian virus 40 large	T antigen	1007
53	Cook JG, Park CH, Burke TW, Leone G, DeGregori J, Engel A and Nevins JR	71.4000-40	1557
54	Analysis of Cdc6 function in the assembly of mammalian prereplication comple Proceedings of the National Academy of Sciences of the USA Corden Corden Corden Corden VIM	xes 99 :1347–52	2002
54	Expression of the retinoblastoma protein is regulated in normal human tissues American Journal of Pathology	144 :500–10	1994
55	Cowell JK, Bia B and Akoulitchev A A novel mutation in the promotor region in a family with a mild form of retinobla	stoma indicates the loca	ation of a new regulatory
	domain for the RB1 gene	12 ·431_6	1996
56	Dahiya A, Gavin MR, Luo RX and Dean DC		1000
	Role of the LXCXE binding site in Rb function Molecular and Cellular Biology	20 :6799–805	2000
57	de Jager SM and Murray JA		
	Plant Molecular Biology	41 :295–9	1999
58	DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, H	luang CM and Livingsto	n DM
	The product of the retinoblastoma susceptibility gene has properties of a cell cy <i>Cell</i>	cle regulatory element 58:1085–95	1989
59	DeGregori J, Kowalik T and Nevins JR		
	Cellular targets for activation by the E2F1 transcription factor include DNA synt erratum appears in <i>Molecular and Cellular Biology</i> 15 :5846–7] Molecular and Cellular Biology	hesis- and G1/S-regula	tory genes [published
60	Deininger MW, Vieira SA, Parada Y, Banerji L, Lam EW, Peters G, Mahon FX,	Kohler T, Goldman JM	and Melo JV
	Direct relation between BCR-ABL tyrosine kinase activity and cyclin D2 express Cancer Research	sion in lymphoblasts 61 :8005–13	2001
61	Delmer A, Ajchenbaum-Cymbalista F, Tang R, Ramond S, Faussat AM, Marie	JP and Zittoun R	
	Overexpression of cyclin D2 in chronic B-cell malignancies Blood	85 :2870–6	1995
62	Deng C, Zhang P, Harper JW, Elledge SJ and Leder P		
	Cell	82:675–84	1995
63	DerKinderen DJ, Koten JW, Nagelkerke NJ, Tan KE, Beemer FA and Den Otte	r W	
	International Journal of Cancer	41 :499–504	1988
64	Desdouets C, Sobczak-Thepot J, Murphy M and Brechot C Cyclin A: function and expression during cell proliferation.	1 ·115_23	1005
65	Dick FA, Sailhamer E and Dyson NJ	1.113-23	1999
	Mutagenesis of the pRB pocket reveals that cell cycle arrest functions are sepa Molecular and Cellular Biology	arable from binding to vi 20:3715–27	ral oncoproteins 2000
66	Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li F Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enfor immortal vet ratain pormal growth and differentiation obstacteristics	-P and Rheinwald JG ced mechanism that lin	nits life span become
	Molecular and Cellular Biology	20 :1436–47	2000
67	Diehl JA, Cheng M, Roussel MF and Sherr CJ Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellula	r localization	
	Genes and Development	12 :3499–511	1998
68	Diehl JA, Zindy F and Sherr CJ Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degr	adation via the ubiquitir	n-proteasome pathway
00	Genes and Development	11 :957–72	1997
69	TAFII250 is a bipartite protein kinase that phosphorylates the base transcription	n factor RAP74	
70	Cell Dependence SS and Smith LM	84 :781–90	1996
70	Retinoblastoma: biology, presentation, and current management .	2.45 54	1000
71	Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel J	JS and Bradley A	1989
	Mice deficient for p53 are developmentally normal but susceptible to spontaneo	ous tumours	1002
72	Dong SM, Pang JC, Poon WS, Hu J, To KF, Chang AR and Ng HK	000.210 21	1002
	Concurrent hypermethylation of multiple genes is associated with grade of oligo Journal of Neuropathology and Experimental Neurology	odendroglial tumors 60:808–16	2001
73	Donnellan R and Chetty R Cyclin D1 and human neoplasia.		
74	Molecular Pathology	51 :1–7	1998
74	Physical interaction of the retinoblastoma protein with human D cyclins	73 :499–511	1993
75	Draper GJ, Sanders BM and Kingston JE		
	Second primary neoplasms in patients with retinoblastoma British Journal of Cancer	53 :661–71	1986
76	Draper GJ, Sanders BM, Brownbill PA and Hawkins MM		
	Patterns of risk of hereditary retinoblastoma and applications to genetic counse British Journal of Cancer	elling 66:211–9	1992

77	Drexler HG Review of alterations of the cyclin-dependent kinase inhibitor INK4 family gene lymphoma cells.	es p15, p16, p18 and p19) in human leukemia-
	Leukemia	12 :845–59	1998
78	Driscoll B, T'Ang A, Hu YH, Yan CL, Fu Y, Luo Y, Wu KJ, Wen S, Shi XH, Bars Discovery of a regulatory motif that controls the exposure of specific upstream conformation and growth suppressing activity of pRb	sky L, Weinberg K, Murp cyclin-dependent kinase	hree AL and Fung YK e sites that determine both
	Journal of Biological Chemistry	274 :9463–71	1999
79	Duan J, Zhang Z and Tong T Senescence delay of human diploid fibroblast induced by anti-sense p16INK4a Journal of Biological Chemistry	a expression 276 :48325–31	2001
80	Dunkel IJ, Gerald WL, Rosenfield NS, Strong EW, Abramson DH and Ghavimi Outcome of patients with a history of bilateral retinoblastoma treated for a second experience.	F ond malignancy: the Mer	norial Sloan-Kettering
	Medical and Pediatric Oncology	30 :59–62	1998
81	Durfee T, Becherer K, Chen PL, Yeh SH, Yang Y, Kilburn AE, Lee WH and Elli The retinoblastoma protein associates with the protein phosphatase type 1 cat <i>Genes and Development</i>	edge SJ alytic subunit 7 :555–69	1993
82	Durfee T, Feiler HS and Gruissem W Retinoblastoma-related proteins in plants: homologues or orthologues of their in Plant Molecular Biology	metazoan counterparts? 43 :635–42	2000
83	Dyson N, Buchkovich K, Whyte P and Harlow E Cellular proteins that are targetted by DNA tumor viruses for transformation.		1000
04	Princess Takamatsu Symposia	20:191–8	1989
04	Deletion of p16 and p15 genes In schistosomiasis-associated bladder cancer (<i>Clinica Chimica Acta</i>	SABC) 300 :159–69	2000
85	Eng C, Li FP, Abramson DH, Ellsworth RM, Wong FL, Goldman MB, Seddon J	J, Tarbell N and Boice JE) Jr
	Journal of the National Cancer Institute	85 :1121–8	1993
86	Engel ME, Datta PK and Moses HL		
	Signal transduction by transforming growth factor-beta: a cooperative paradign Journal of Cellular Biochemistry Supplement	n with extensive negative 30-31.111-22	e regulation 1998
87	Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B, Buluwela L, W	Veitzman SA, Marks J ar	nd Sukumar S
00	Loss of cyclin D2 expression in the majority of breast cancers is associated wit Cancer Research	th promoter hypermethyl 61:2782–7	ation 2001
88	The cell cycle and the retinoblastoma protein family.		
00	Cancer and Metastasis Reviews	13 :45–66	1994
89	Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J and Livingston DM Functional interactions of the retinoblastoma protein with mammalian D-type cy <i>Cell</i>	yclins 73 :487–97	1993
90	Eymin B, Gazzeri S, Brambilla C and Brambilla E Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulate Oncogene	ed in small cell lung carc 20 :1678–87	inoma 2001
91	Fan S, Yuan R, Ma YX, Xiong J, Meng Q, Erdos M, Zhao JN, Goldberg ID, Per Disruption of BRCA1 LXCXE motif alters BRCA1 functional activity and regulat <i>Opcogene</i>	stell RG and Rosen EM tion of RB family but not 20:4827–41	RB protein binding
92	Fanciulli M, Bruno T, Di Padova M, De Angelis R, Iezzi S, Iacobini C, Floridi A Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which	and Passananti C interacts with and affec	ts the growth suppression
	function of Rb	14 ·904–12	2000
93	Fargnoli MC, Chimenti S, Keller G, Soyer HP, Dal Pozzo V, Hofler H and Peris CDKN2a/p16INK4a mutations and lack of p19ARF involvement in familial mela	s K anoma kindreds	2000
04	Journal of Investigative Dermatology	111 :1202–6	1998 Defectioner District
94	Characterization of the retinoblastoma binding proteins RBP1 and RBP2 Oncogene	8 :3149–56	1993
95	Fattman CL, Delach SM, Dou QP and Johnson DE Sequential two-step cleavage of the retinoblastoma protein by caspase-3/-7 du	uring etoposide-induced	apoptosis 2001
96	Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Roberts JM	Broudy V, Perlmutter RM	M, Kaushansky K and
	A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesi <i>Cell</i>	is, and female sterility in 85 :733–744	p27(Kip1)-deficient mice 1996
97	Ferreira R, Naguibneva I, Mathieu M, Ait Si Ali S, Robin P, Pritchard LL and Ha Cell cycle-dependent recruitment of HDAC-1 correlates with deacetylation of h <i>EMBO Reports</i>	arel-Bellan A istone H4 on an Rb-E2F 2 :794–9	target promoter 2001
98	Fields S and Song O A novel genetic system to detect protein-protein interactions	240-245 0	4000
99	Filmus J, Robles AI, Shi W, Wong MJ, Colombo LL and Conti CJ Induction of cyclin D1 overexpression by activated ras	340 .245–0	1909
	Oncogene	9 :3627–33	1994
100	FitzGerald MG, Harkin DP, Silva-Arrieta S, MacDonald DJ, Lucchina LC, Unsa Sober AJ and Haber DA	ll H, O'Neill E, Koh J, Fin	kelstein DM, Isselbacher KJ,
	Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melan Proceedings of the National Academy of Sciences of the USA	noma: analysis of a clinic 93 :8541–5	c-based population 1996
101	Flemington EK, Speck SH and Kaelin WG Jr E2F-1-mediated transactivation is inhibited by complex formation with the retin Proceedings of the National Academy of Sciences of the USA	oblastoma susceptibility 90:6914–8	gene product 1993

102	Florio M, Hernandez MC, Yang H, Shu HK, Cleveland JL and Israel MA Id2 promotes apoptosis by a novel mechanism independent of dimerization to	basic helix-loop-helix fa	ctors
	Molecular and Cellular Biology	18 :5435–44	1998
103	Forng RY and Atreya CD Mutations in the retinoblastoma protein-binding LXCXE motif of rubella virus pro- lourned of Concern Viroleny	utative replicase affect v	virus replication
104	Foulkes WD, Flanders TY, Pollock PM and Hayward NK The CDKN2A (p16) gene and human cancer.	80.327-32	1999
	Molecular Medicine	3 :5–20	1997
105	Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to c Genes and Development	Su L and Xiong Y ollaboratively suppress 12 :2899–911	pituitary tumorigenesis 1998
106	Friend SH Bernards R Rogeli S Weinberg RA Ranaport IM Albert DM and	Drvia TP	
100	A human DNA segment with properties of the gene that predisposes to retinob Nature	lastoma and osteosarco 323:643–6	oma 1986
107	Fu YH, Nishinaka T, Yokoyama K and Chiu R A retinoblastoma susceptibility gene product, RB, targeting protease is regulate	ed through the cell cycle	9
108	<i>FEBS Letters</i> Fujita T, Ohtani-Fujita N and Sakai T	421 :89–93	1998
	Identification of an RB-responsive region in the 5' untranslated region of the RI Cancer Letters	B gene 101 :149–57	1996
109	Fukami-Kobayashi J and Mitsui Y Cyclin D1 inhibits cell proliferation through binding to PCNA and cdk2		1000
	Experimental Cell Research	246 :338–47	1999
110	Structural evidence for the authenticity of the human retinoblastoma gene	220:4057 04	1007
111	Science	230:1007-01	1987 in 10
	Expression and state of phosphorylation of the retinoblastoma susceptibility ge hematopoietic cells	ene product in cycling ar	nd noncycling human
	Proceedings of the National Academy of Sciences of the USA	87 :2770–4	1990
112	Fusco C, Reymond A and Zervos AS Molecular cloning and characterization of a novel retinoblastoma-binding prote	in 54 :251 9	1009
113	Genomics	51 .331–0	1990
115	Translation of p15.5INK4B, an N-terminally extended and fully active form of p Oncogene	15INK4B, is initiated fro 19:1724–8	m an upstream GUG codon 2000
114	Gaubatz S, Lindeman GJ, Ishida S, Jakoi L, Nevins JR, Livingston DM and Re	mpel RE	
	E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control Molecular Cell	6 :729–35	2000
115	Geng Y, Eaton EN, Picon M, Roberts JM, Lundberg AS, Gitford A, Sardet C ar Regulation of cyclin E transcription by E2Fs and retinoblastoma protein	10 Weinberg RA	1006
116	Cong X, Xu Q, Wherickey W, Dick F, Taci KY, Ford HL, Biowee DK, Bordee Al	12:11/3-80 D. Amoti D. Jooko T. Dic	1990
110	Sicinski P Expression of cyclins E1 and E2 during mouse development and in neoplasia		naiuson A, Dyson N and
117	Germain D Russell A Thompson A and Hendley J	98 :13138–43	2001
	Ubiquitination of free cyclin D1 is independent of phosphorylation on threonine lournal of Biological Chamistry	286 275 :12074_9	2000
118	Giardiello FM Petersen GM Brensinger JD Luce MC Cavouette MC Bacon	J Booker SV and Hami	ton SR
	Hepatoblastoma and APC gene mutation in familial adenomatous polyposis	20 :967 0	1006
119	Gill RM, Hamel PA, Zhe J, Zacksenhaus E, Gallie BL and Phillips RA	39.007-9	1990
	Characterization of the human RB1 promoter and of elements involved in trans Cell Growth and Differentiation	scriptional regulation 5:467–74	1994
120	Gille H and Downward J Multiple ras effector pathways contribute to G(1) cell cycle progression		
121	Journal of Biological Chemistry Goldherg Z, Vont Signov R, Berger M, Zwang Y, Perets R, Van Etten RA, Orej	274 :22033–40	1999 Y
	Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation		
122	EMBO Journal Goldstein AM Chidambaram A Halpern A Holly FA Guerry IV D Sagebiel R	21:3715–27 Flder DF and Tucker M	2002 /A
	Rarity of CDK4 germline mutations in familial melanoma Melanoma Research	12 :51–5	2002
123	Gonzalez SL, Stremlau M, He X, Basile JR and Munger K		
	Degradation of the retinoblastoma tumor suppressor by the human papillomavi inactivation and is separable from proteasomal degradation of E7 <i>Journal of Virology</i>	irus type 16 E7 oncopro 75:7583–91	tein is important for functional
124	Goodrich DW. Wang NP. Qian YW. Lee EY and Lee WH		
	The retinoblastoma gene product regulates progression through the G1 phase Cell	of the cell cycle 67 :293–302	1991
125	Gorgoulis VG, Koutroumbi EN, Kotsinas A, Zacharatos P, Markopoulos C, Gia C	nnikos L, Kyriakou V, V	oulgaris Z, Gogas I and Kittas
100	Alterations of p16-pRb pathway and chromosome locus 9p21–22 in sporadic in Molecular Medicine	1vasive breast carcinom 4:807–22	1998
126	Gorgoulls VG, Zacharatos P, Kotsinas A, Mariatos G, Liloglou T, Vogiatzi T, Fo Zoumpourlis V, Bramis J, Michail PO, Asimacopoulos PJ, Field JK and Kittas (Altered expression of the cell cycle regulatory molecules pBb, p53 and MDM2	Dukas P, Rassidakis G, C exert a synemetic effec	Garinis G, Ioannides T,
	chromosomal instability in non-small cell lung carcinomas (NSCLCs)	short a synorgene chee	ton tamor growth and
	Molecular Medicine	6 :208–37	2000

127	Grana X, Garriga J and Mayol X Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative	control of cell growth.	1009
100	Creater V. Debue N. Lehmenn D. Henning W. Desserge F. and Herethemke B.	17.3305-83	1998
128	Greger V, Debus N, Lonmann D, Hopping W, Passarge E and Horstnemke B Frequency and parental origin of hypermethylated RB1 alleles in retinoblastom	a 94:401 6	1004
120	Gruis NA van der Velden PA Sandkuij I A Prins DE Weaver-Feldhaus I Ka	mb A Bergman W and	Frants RR
125	Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma Nature Genetics	kindreds 10 :351–3	1995
130	Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O'Keefe CL, Matera AG and X	iong Y	
	Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related C Genes and Development	DK6 inhibitor, correlate 8:2939–52	s with wild-type pRb function 1994
131	Haluska FG and Hodi FS Molecular genetics of familial cutaneous melanoma		
	Journal of Clinical Oncology	16 :670–82	1998
132	Hamel PA, Gill RM, Phillips RA and Gallie BL		
	Transcriptional repression of the E2-containing promoters EllaE, c-myc, and R	B1 by the product of the	e RB1 gene
100	Molecular and Cellular Biology	12 :3431–8	1992
133	n15INK4B is a notential effector of TGE-beta-induced cell cycle arrest		
	Nature	371 :257–61	1994
134	Hansen MF, Koufos A, Gallie BL, Phillips RA, Fodstad O, Brogger A, Gedde-D	ahl T and Cavenee WK	
	Osteosarcoma and retinoblastoma: a shared chromosomal mechanism reveali	ng recessive predisposi	tion
405	Proceedings of the National Academy of Sciences of the USA	82 :6216–20	1985
135	Refrontion in cell-cycle regulation and apoptosis		
	Nature Cell Biology	2 :E65–7	2000
136	Harbour JW, Luo RX, Dei-Santi A, Postigo AA and Dean DC		
	Cdk phosphorylation triggers sequential intramolecular interactions that progre <i>Cell</i>	ssively block Rb functio 98:859–69	ns as cells move through G1 1999
137	Hashemi J, Platz A, Ueno T, Stierner U, Ringborg U and Hansson J		
	Cancer Research	60 :6864–7	2000
138	Hatada I, Ohashi H, Fukushima Y, Kaneko Y, Inoue M, Komoto Y, Okada A, O	hishi S, Nabetani A, Mo	prisaki H, Nakayama M,
	Niikawa N and Mukai T	, , -	, , ,
	An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome	44.474 0	1000
130	Nature Genetics	14:171-3	1990
155	p107 and p130 associated cvclin A has altered substrate specificity		
	Journal of Biological Chemistry	272 :22954–9	1997
140	He J, Olson JJ and James CD		
	Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated o	overexpression of cdk4 i	s observed in distinct subsets
	Cancer Research	55 :4833–6	1995
141	Helin K, Holm K, Niebuhr A, Eiberg H, Tommerup N, Hougaard S, Poulsen HS	, Spang-Thomsen M an	d Norgaard P
	Loss of the retinoblastoma protein-related p130 protein in small cell lung carcin	noma	4007
140	Proceedings of the National Academy of Sciences of the USA	94 :6933–8	1997
142	Cyclin-dependent kinases at the G1-S transition of the mammalian cell cycle.	E	
	Mutation Research	436 :1–9	1999
143	Henry DO, Moskalenko SA, Kaur KJ, Fu M, Pestell RG, Camonis JH and White	e MA	
	Ral GTPases contribute to regulation of cyclin D1 through activation of NF-kap	paB	0000
111	Molecular and Cellular Biology	20:8084–92	2000
144	Identification of discrete structural domains in the retinoblastoma protein. Amin	o-terminal domain is re	quired for its oligomerization
	Journal of Biological Chemistry	269 :1380–7	1994
145	Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ and Baylin SB		
	Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the m	ajor types of hematolog	jical malignancies
146	Herman IG, Ien I, Merlo A and Baylin SB	51.037-41	1997
140	Hypermethylation-associated inactivation indicates a tumor suppressor role for	p15INK4B	
	Cancer Research	56 :722–7	1996
147	Hiebert SW		
	Regions of the retinoblastoma gene product required for its interaction with the	E2F transcription facto	r are necessary for E2
	Molecular and Cellular Biology	13 ·3384–91	1993
148	Higashi H. Suzuki-Takahashi I. Saitoh S. Segawa K. Tava Y. Okuvama A. Nish	nimura S and Kitagawa	M
	Cyclin-dependent kinase-2 (Cdk2) forms an inactive complex with cyclin D1 sir	nce Cdk2 associated wi	th cyclin D1 is not
	phosphorylated by Cdk7-cyclin-H	007.400 7	4000
140	European Journal of Biochemistry	237:460-7	1996
149	Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-	rii 5 and Fujila J repeat protein overexpr	essed in henatomas
	Nature Medicine	6 :96–9	2000
150	Hindges R and Hubscher U		
	DNA polymerase delta, an essential enzyme for DNA transactions	270.24E 62	1007
151	Hinds PW Mittnacht S. Dulic V. Arnold A. Reed SL and Weinberg RA	J10.343-02	1991
	Regulation of retinoblastoma protein functions by ectopic expression of human	cyclins	
	Cell	70 :993–1006	1992

152	Hirabayashi H, Fujii Y, Sakaguchi M, Tanaka H, Yoon HE, Komoto Y, Inoue M,	, Miyoshi S and Matsuda	a H
	p16INK4, pRB, p53 and cyclin D1 expression and hypermethylation of CDKN2 International Journal of Cancer	gene in thymoma and t 73 :639–44	hymic carcinoma 1997
153	Hitomi M and Stacey DW Cyclin D1 production in cycling cells depends on ras in a cell-cycle-specific ma	nner	
154	Current Biology Holt SE and Shay JW	9 :1075–84	1999
	Role of telomerase in cellular proliferation and cancer Journal of Cellular Physiology	180 :10–8	1999
155	Houck JC, Sharma VK and Hayflick L Functional failures of cultured human diploid fibroblasts after continued populat	tion doublings	
156	Proceedings of the Society for Experimental Biology and Medicine Houldsworth J, Reuter V, Bosl GJ and Chaganti RS	137 :331–3	1971
	Aberrant expression of cyclin D2 is an early event in human male germ cell tun <i>Cell Growth and Differentiation</i>	norigenesis 8 :293–9	1997
157	Hu N, Gutsmann A, Herbert DC, Bradley A, Lee WH and Lee EY Heterozygous Rb-1 delta 20/+mice are predisposed to tumors of the pituitary g Oncogene	land with a nearly comp 9:1021–7	lete penetrance 1994
158	Hu PP, Shen X, Huang D, Liu Y, Counter C and Wang XF The MEK pathway is required for stimulation of p21(WAF1/CIP1) by transformi	ng growth factor-beta	1000
159	Hu X, Cress WD, Zhong Q and Zuckerman KS	274:35381-7	1999
	Transforming growth factor beta inhibits the phosphorylation of pRB at multiple formation of pRB family-E2F complexes in human myeloid leukemia cells <i>Biochemical and Biophysical Research Communications</i>	<pre>serine/threonine sites a 276:930–9</pre>	and differentially regulates the 2000
160	Hu YX, Watanabe H, Li P, Wang Y, Ohtsubo K, Yamaguchi Y and Sawabu N An immunohistochemical analysis of p27 expression in human pancreatic carci	inomas	
161	Pancreas Huang S, Lee WH and Lee EY	21 :226–30	2000
	A cellular protein that competes with SV40 T antigen for binding to the retinobla Nature	astoma gene product 350:160–2	1991
162	The retinoblastoma protein region required for interaction with the E2F transcript terminal sequences	ption factor includes the	T/E1A binding and carboxy-
163	DNA and Cell Biology Hui AM Li X, Makuuchi M, Takayama T, and Kubota K	11 :539–48	1992
100	Over-expression and lack of retinoblastoma protein are associated with tumor p carcinoma	progression and metast	asis in hepatocellular
164	International Journal of Cancer lavarone A and Massague J	84 :604–8	1999
	E2F and histone deacetylase mediate transforming growth factor beta repressi Molecular and Cellular Biology	on of cdc25A during kei 19:916–22	ratinocyte cell cycle arrest 1999
165	lavarone A and Massague J Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF <i>Nature</i>	-beta in cells lacking the 387 :417–22	e CDK inhibitor p15 1997
166	lavarone A, Garg P, Lasorella A, Hsu J and Israel MA The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the ret	inoblastoma protein	1004
167	lida S, Fujii H and Moriwaki K	8 :1270–84	1994
	A somatic mutation of the p21(Waf1/Cip1) gene in a human adrenocortical ade Anticancer Research	noma 17 :633–6	1997
168	Ikeda H, Yoshimoto I and Shida N Molecular analysis of p21 and p27 genes in human pituitary adenomas	76 .1110_23	1007
169	Ikeda M, Orimo H, Moriyama H, Nakajima E, Matsubara N, Mibu R, Tanaka N, Close correlation between mutations of E2F4 and hMSH3 genes in colorectal of <i>Cancer Research</i>	Shimada T, Kimura A a cancers with microsatell 58 :594–8	and Shimizu K ite instability 1998
170	Inoue A, Torigoe T, Sogahata K, Kamiguchi K, Takahashi S, Sawada Y, Saijo I 70-kDa heat shock cognate protein interacts directly with the N-terminal region Identification of a novel region of pRb-mediating protein interaction	M, Taya Y, Ishii S, Sato of the retinoblastoma g	N et al ene product pRb.
171	Journal of Biological Chemistry Jolascon A. Fajenza MF. Coppola B. della Ragione F. Schettini F and Biondi A.	270 :22571–6	1995
	Homozygous deletions of cyclin-dependent kinase inhibitor genes, p16(INK4A) lymphoblastic leukemias	and p18, in childhood	T cell lineage acute
172	Iravani M, Dhat R and Price CM	10.255-00	
172	Methylation of the multi tumor suppressor gene-2 (MTS2, CDKN1, p15INK4B) Oncogene to X Takada T. Sakan M. Tsujimata M. Mandan M and Matajura N.	15 :2609–14	1997
175	Expression of p57/Kip2 protein in hepatocellular carcinoma	61 :221–5	2001
174	Ito Y, Takeda T, Wakasa K, Tsujimoto M and Matsuura N Expression and possible role of cyclin D3 in human pancreatic adenocarcinoma	a 21 :1042 9	2001
175	Ito Y, Takeda T, Wakasa K, Tsujimoto M and Matsuura N Expression of p57/Kip2 protein in pancreatic adenocarcinoma	∠ I . IU Y J [−] 0	2001
176	Pancreas	23 :246–50	2001 ad Miyauabi A
1/0	Expression of p57/Kip2 protein in normal and neoplastic thyroid tissues	o.373 6	
	International Journal of Molecular MediCifie	J.3/3-0	2002

7

177	Itoh S, Itoh F, Goumans MJ and Ten Dijke P Signaling of transforming growth factor both family members through Smed pr	ataina	
	Signaling of transforming growth factor-beta family members through Smad pr	267:6954–67	2000
178	Jiang W. Wells NJ and Hunter T		2000
	Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6 Proceedings of the National Academy of Sciences of the USA	96 :6193–8	1999
179	John RM, Ainscough JF, Barton SC and Surani MA		
	Distant cis-elements regulate imprinted expression of the mouse p57(Kip2) (C BeckwithWiedemann syndrome	Cdkn1c) gene: implicatio	ns for the human disorder,
	Human Molecular Genetics	10 :1601–9	2001
180	Johnson DG, Schwarz JK, Cress WD and Nevins JR Expression of transcription factor E2F1 induces quiescent cells to enter S phase Nature	se	4002
101	Nature	303 :349-32 Ivan M. Bartek, I. Wyofo	1993 Ind Thomas D and Bond IA
101	Evidence for a telomere-independent "clock" limiting RAS oncogene-driven pro Molecular and Cellular Biology	oliferation of human thy 20:5690–9	roid epithelial cells 2000
182	Joo M, Kang YK, Kim MR, Lee HK and Jang JJ Cyclin D1 overexpression in hepatocellular carcinoma		
	Liver	21 :89–95	2001
183	Joyce D, Bouzahzah B, Fu M, Albanese C, D'Amico M, Steer J, Klein JU, Lee Integration of Rac-dependent regulation of cyclin D1 transcription through a nu Journal of Biological Chemistry	RJ, Segall JE, Westwic iclear factor-kappaB-de 274 :25245–9	k JK, Der CJ and Pestell RG pendent pathway 1999
184	Kaelin WG Jr Functions of the retinoblastoma protein		
	Bioessays	21 :950–8	1999
185	Kaelin WG Jr, Krek W, Sellers WR, DeCaprio JA, Ajchenbaum F, Fuchs CS, C Expression cloning of a cDNA encoding a retinoblastoma-binding protein with	Chittenden T, Li Y, Farnh E2F-like properties	nam PJ, Blanar MA et al
196	Cell Kamija T. Badnar S. van da Kamp F. Bandla DH and Sharr C.L	70 :351–64	1992
186	Tumor spectrum in ARF-deficient mice	EQ.0017 00	1000
187	Kato H. Yoshikawa M. Fukai Y. Taiima K. Masuda N. Tsukada K. Kuwano H a	nd Nakaiima T	1999
	An immunohistochemical study of p16, pRb, p21 and p53 proteins in human en Anticancer Research	sophageal cancers 20:345–9	2000
188	Kato J, Matsushime H, Hiebert SW, Ewen ME and Sherr CJ		
	Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb pl CDK4	hosphorylation by the c	yclin D-dependent kinase
400	Genes and Development	7 :331–42	1993
189	Molecular analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in h	uman malignancies	J, WIICYZNSKI S Et al
	Cancer Research	55 :2266–9	1995
190	Kawamura J, Sakurai M, Tsukamoto K and Tochigi H Leiomyosarcoma of the bladder eighteen years after cyclophosphamide therap	by for retinoblastoma	4002
191	Kennedy BK Liu OW Dick FA Dyson N Harlow F and Vidal M	51.49-55	1993
	Histone deacetylase-dependent transcriptional repression by pRB in yeast occ binding cleft	curs independently of int	teraction through the LXCXE
192	Proceedings of the National Academy of Sciences of the USA Kerkhoff E and Rapp UR	98 :8720–5	2001
	Cell cycle targets of Ras/Raf signalling.		
102	Oncogene Kovomarsi K and Harliozak TW	17 :1457–62	1998
195	The role of cyclin E in cell proliferation, development and cancer.	• ·=· •	100-
104	Progress in Cell Cycle Research Kharbanda S. Xuan ZM. Weichselbaum P and Kufe D	3:171-91	1997
134	Determination of cell fate by c-Abl activation in the response to DNA damage.		
	Oncogene	17 :3309–18	1998
195	Kim H, Ham EK, Kim YI, Chi JG, Lee HS, Park SH, Jung YM, Myung NK, Lee Overexpression of cyclin D1 and cdk4 in tumorigenesis of sporadic hepatoblas	MJ and Jang JJ stomas	4000
196	Cancer Letters	131:177-83	1998
100	Amplified CDK2 and cdc2 activities in primary colorectal carcinoma Cancer	85 :546–53	1999
197	Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K, Kato	J, Segawa K, Yoshida	E, Nishimura S and Taya Y
	The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from th EMBO Journal	at for phosphorylation t 15 :7060–9	oy cyclin A/E-Cdk2 1996
198	Kitagawa M, Saitoh S, Ogino H, Okabe T, Matsumoto H, Okuyama A, Tamai K cdc2-like kinase is associated with the retinoblastoma protein	K, Ohba Y, Yasuda H, N	ishimura S et al
	Oncogene	7 :1067–74	1992
199	Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA and Klingelhutz AJ Both Rb/p16INK4a inactivation and telomerase activity are required to immorta	alize human epithelial ce 396 :84–8	ells 1998
200	Knudsen ES and Wang JY		
	Differential regulation of retinoblastoma protein function by specific Cdk phosp <i>Journal of Biological Chemistry</i>	horylation sites 271 :8313–20	1996
201	Knudsen ES and Wang JY	vingen modiated DD	senhonulation
000	Molecular and Cellular Biology	17:5771–83	1997
202	Knudson AG Jr Mutation and cancer: statistical study of retinoblastoma		
	Proceedings of the National Academy of Sciences of the USA	68 :820–3	1971

203	Ko TC, Sheng HM, Reisman D, Thompson EA and Beauchamp RD	4411-	
	Oncogene	10.177–84	1995
204	Kocabalkan O, Ozgur F, Erk Y, Gursu KG and Gungen Y	10.177-04	1555
201	Malignant melanoma in xeroderma pigmentosum patients: report of five cases		
	European Journal of Surgical Oncology	23 :43–7	1997
205	Komatsu N, Takeuchi S, Ikezoe T, Tasaka T, Hatta Y, Machida H, Williamson I	K, Bartram CR, Koeffle	r HP and Taguchi H
	Mutations of the E2F4 gene in hematological malignancies having microsatellite	e instability	2000
206	Blood	95 :1509–10	2000
200	Alterations of p53, pRb, cyclin D(1) and cdk4 in human oral and pharyngeal squ	uamous cell carcinomas	
	Oral Oncology	36 :334–9	2000
207	Kroiss MM, Bosserhoff AK, Vogt T, Buettner R, Bogenrieder T, Landthaler M ar	nd Stolz W	
	Loss of expression or mutations in the p73 tumour suppressor gene are not inv	olved in the pathogene	sis of malignant melanomas
	Melanoma Research	8 :504–9	1998
208	Krucher NA, Zygmunt A, Mazioum N, Tamrakar S, Ludiow JW and Lee MY	nolumorana dalta (n12	5)
	Oncogene	19 :5464–70	2000
209	Kuchiki H, Saino M, Nobukuni T, Yasuda J, Maruyama T, Kayama T, Murakam	i Y and Sekiya T	
	Detection of amplification of a chromosomal fragment at 6p21 including the cyc	lin D3 gene in a gliobla	stoma cell line by arbitrarily
	primed polymerase chain reaction	6- 440.0	
040	International Journal of Cancer	85 :113–6	2000
210	Frequent inactivation of the cyclin-dependent kinase inhibitor p18 by homozyco	IE Sus deletion in multiple (myeloma cell lines: ectonic
	p18 expression inhibits growth and induces apoptosis		
	Leukemia	16 :127–34	2002
211	Kwon TK, Buchholz MA, Gabrielson EW and Nordin AA		
	A novel cytoplasmic substrate for cdk4 and cdk6 in normal and malignant epithe	elial derived cells	1005
212	Uncogene	11:20/7-83	1995
212	MDM2 and CDK4 gene amplification in Ewing's sarcoma		
	Journal of Pathology	175 :211–7	1995
213	Lai A, Lee JM, Yang WM, DeCaprio JA, Kaelin WG Jr, Seto E and Branton PE		
	RBP1 recruits both histone deacetylase-dependent and -independent repression	on activities to retinoblas	stoma family proteins
	Molecular and Cellular Biology	19 :6632–41	1999
214	Lai A, Marcellus RC, Corbeil HB and Branton PE		
		18 ·2091–100	1999
215	Lai S and El Naggar AK		
	Differential expression of key cell cycle genes (p16/cyclin D1/pRb) in head and	neck squamous carcine	omas
	Laboratory Investigation	79 :255–60	1999
216	Lam PY, Di Tomaso E, Ng HK, Pang JC, Roussel MF and Hjelm NM		
	British Journal of Neurosurgery	14 :28–32	2000
217	Lapointe J, Lachance Y, Labrie Y, Labrie C, Lapointe J, Lachance Y, Labrie Y, L	Labrie C,Lapointe J, La	chance Y, Labrie Y and
	Labrie C		
	A p18 mutant defective in CDK6 binding in human breast cancer cells	56 :4586 0	1006
218	Lasorella A Javarone A and Israel MA	50.4000-0	1330
210	Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins		
	Molecular and Cellular Biology	16 :2570–8	1996
219	Lasorella A, Noseda M, Beyna M, Yokota Y and lavarone A		
	Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoprote	eins	2000
220	Nature Latres E. Malumbres M. Sotillo P. Martin, L. Ortega S. Martin, Caballero, J. Elore	407.392-0 s IM Cordon Cardo C	2000 and Barbacid M
220	Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cvcle inhibitors in	proliferation and tumor	igenesis
	EMBO Journal	19 :3496–506	2000
221	Lavoie JN, L'Allemain G, Brunet A, Muller R and Pouyssegur J		
	Cyclin D1 expression is regulated positively by the p42/p44MAPK and negative	ly by the p38/HOGMAF	PK pathway
222	Journal of Biological Chemistry	271.20008-10	1996
222	Strain-dependent myeloid hyperplasia, growth deficiency, and accelerated cell	cvcle in mice lacking th	e Rb-related p107 gene
	Molecular and Cellular Biology	18 :7455–65	1998
223	LeCouter JE, Kablar B, Whyte PF, Ying C and Rudnicki MA		
	Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related	p130 gene	1000
224	Development	125:4009-79	1998
224	Mice deficient for Rb are nonviable and show defects in neurogenesis and hae	n matopoiesis	
	Nature	359 :288–94	1992
225	Lee JO, Russo AA and Pavletich NP		
	Structure of the retinoblastoma tumour-suppressor pocket domain bound to a p	eptide from HPV E7	1000
226	Nature	391 :859–65	1998
220	Targeted disruption of p107: functional overlap between p107 and Rb	nd Jacks I	
	Canag and Davalanment	10 :1621–32	1996
227	Genes and Development		
221	Lee WH, Bookstein R, Hong F, Young LJ, Shew JY and Lee EY		
221	Lee WH, Bookstein R, Hong F, Young LJ, Shew JY and Lee EY Human retinoblastoma susceptibility gene: cloning, identification, and sequence		4007
221	Lee WH, Bookstein R, Hong F, Young LJ, Shew JY and Lee EY Human retinoblastoma susceptibility gene: cloning, identification, and sequence <i>Science</i>	e 235 :1394–9	1987
227	Lee WH, Bookstein R, Hong F, Young LJ, Shew JY and Lee EY Human retinoblastoma susceptibility gene: cloning, identification, and sequence <i>Science</i> Lee WH, Shew JY, Hong FD, Sery TW, Donoso LA, Young LJ, Bookstein R and The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein asso	e 235 :1394–9 d Lee EY ciated with DNA bindin	1987 g activity
228	Lee WH, Shew JY, Hong FD, Sery TW, Donoso LA, Young LJ, Bookstein R and <i>Science</i> Lee WH, Shew JY, Hong FD, Sery TW, Donoso LA, Young LJ, Bookstein R and The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein asso <i>Nature</i>	e 235 :1394–9 d Lee EY poiated with DNA bindin 329 :642–5	1987 g activity 1987

230	Li J and Tsai MD Novel insights into the INK4-CDK4/6-Rb pathway: counter action of gankyrin a phosphorylation of Rb	against INK4 proteins re	gulates the CDK4-mediated
231	Li JM, Hu PP, Shen X, Yu Y and Wang XF E2F4-RB and E2F4-p107 complexes suppress gene expression by transformi Proceedings of the National Academy of Sciences of the USA	ing growth factor beta th	rough E2F binding sites
232	Li Y, Nichols MA, Shay JW and Xiong Y Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16	by the retinoblastoma s	usceptibility gene product
	pRb Cancer Research	54 .6078_82	1004
233	Li YJ, Hoang-Xuan K, Zhou XP, Sanson M, Mokhtari K, Faillot T, Cornu P, Po Analysis of the p21 gene in gliomas	isson M, Thomas G and	Hamelin R
234	Lin BT, Gruenwald S, Morla AO, Lee WH and Wang JY Retinoblastoma cancer suppressor gene product is a substrate of the cell cycl EMBO, Journal	le regulator cdc2 kinase	1990
235	Lindeman GJ, Gaubatz S, Livingston DM and Ginsberg D The subcellular localization of E2F-4 is cell-cycle dependent <i>Proceedings of the National Academy of Sciences of the USA</i>	94 :5095–100	1997
236	Lohmann DR RB1 gene mutations in retinoblastoma	14.283 8	1000
237	Longley MJ, Pierce AJ and Modrich P	14.203-0	1999
238	DNA polymerase delta is required for human mismatch repair in vitro Journal of Biological Chemistry	272 :10917–21	1997
200	Specific enzymatic dephosphorylation of the retinoblastoma protein Molecular and Cellular Biology	13 :367–72	1993
239	Ludlow JW, Shon J, Pipas JM, Livingston DM and DeCaprio JA The retinoblastoma susceptibility gene product undergoes cell cycle-depende SV40 large T	nt dephosphorylation an	d binding to and release from
	Cell	60 :387–96	1990
240	Lukas J, Bartkova J and Bartek J Convergence of mitogenic signalling cascades from diverse classes of recept controlled G1 checkpoint	ors at the cyclin D-cyclin	-dependent kinase-pRb-
044	Molecular and Cellular Biology	16 :6917–25	1996
241	Cyclin E-induced S phase without activation of the pRb/E2F pathway Genes and Development	11:1479–92	1997
242	Luo J, Su F, Chen D, Shiloh A and Gu W Deacetylation of p53 modulates its effect on cell growth and apoptosis Nature	408 ·377_81	2000
243	Maelandsmo GM, Florenes VA, Hovig E, Oyjord T, Engebraaten O, Holm R, E Involvement of the pRb/p16/cdk4/cyclin D1 pathway in the tumorigenesis of sj British Journal of Cancer	Borresen AL and Fodsta poradic malignant melan 73:909–16	d O omas 1996
244	Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain J Retinoblastoma protein represses transcription by recruiting a histone deacety	IP, Troalen F, Trouche D vlase 391 :601–5	and Harel Bellan A
245	Malumbres M, Perez de Castro I, Santos J, Melendez B, Mangues R, Serrano Inactivation of the cyclin-dependent kinase inhibitor p15INK4b by deletion and alterations in murine primary T-cell lymphomas	M, Pellicer A and Ferna de novo methylation wi	andez Piqueras J th independence of p16INK4a
246	Oncogene Marana M. Saambia C. Cianpitelli C. Forrandina C. Massiulla V. Bollasosa A.	14:1361–70 Popodotti Popioi P and	1997 Mapouso S
240	Analysis of cyclin E and CDK2 in ovarian cancer: gene amplification and RNA International Journal of Cancer	overexpression 75:34–9	1998
247	Martin-Caballero J, Flores JM, Garcia-Palencia P and Serrano M Tumor susceptibility of p21(Waf1/Cip1)-deficient mice	61 -6234_8	2001
248	Masciullo V, Scambia G, Marone M, Giannitelli C, Ferrandina G, Bellacosa A, Altered expression of cyclin D1 and CDK4 genes in ovarian carcinomas	Benedetti-Panici P and	Mancuso S
249	Masciullo V, Sgambato A, Pacilio C, Pucci B, Ferrandina G, Palazzo J, Carbo Giordano A	ne A, Cittadini A, Mancu	so S, Scambia G and
050	Frequent loss of expression of the cyclin-dependent kinase inhibitor p27 in ep Cancer Research	ithelial ovarian cancer 59 :3790–4	1999
250	Matsubara N, Yoshitaka T, Matsuno T, Ikeda M, Isozaki H, Tanaka N and Shi Multiple tumors and a novel E2F-4 mutation. A case report Digestion	тили к 62 :213–6	2000
251	Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ and Kato JY D-type cyclin-dependent kinase activity in mammalian cells	14:2066 76	1004
252	Mayol X, Garriga J and Grana X Cell cycle-dependent phosphorylation of the retinoblastoma-related protein p1	14.2000-70	1994
253	Oncogene Metcalfe JA, Parkhill J, Campbell J, Stacey M, Bings P, Byrd P J and Taylor A	11 :801–8 M	1995
_00	Accelerated telomere shortening in ataxia telangiectasia Nature Genetics	13 :350–3	1996

:4279–90

Lees JA, Buchkovich KJ, Marshak DR, Anderson CW and Harlow E The retinoblastoma protein is phosphorylated on multiple sites by human cdc2 *EMBO Journal*

254	Meyerson M and Harlow E		
	Molecular and Cellular Biology	14 ·2077–86	1994
255	Mihara K, Cao XR, Yen A, Chandler S, Driscoll B, Murphree AL, T'Ang A and F	Fung YK	
	Cell cycle-dependent regulation of phosphorylation of the human retinoblaston	na gene product	1000
256	Science Mihara M. Shintani S. Nakahara V. Kiyata A. Hayama V. Mataumura T. and We	246 :1300–3	1989
250	Overexpression of CDK2 is a prognostic indicator of oral cancer progression	ng DT	
	Japanese Journal of Cancer Research	92 :352–60	2001
257	Miller SJ, Suthiphongchai T, Zambetti GP and Ewen ME		
	p53 binds selectively to the 5' untranslated region of cdk4, an RNA element ne	ecessary and sufficient for	or transforming growth factor
	Molecular and Cellular Biology	20 :8420–31	2000
258	Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T,	Workman J, Wang L, Be	erger SL, Kouzarides T,
	Nakatani Y and Allis CD		
	Cell	87 ·1261–70	1996
259	Moberg K. Starz MA and Lees JA	01.1201 10	1000
	E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry		
	Molecular and Cellular Biology	16 :1436–49	1996
260	Moll AC, Imnot SM, Bouter LM and Tan KE Second primary tumors in patients with retinoblastoma. A review of the literature	re	
	Ophthalmic Genetics	18 :27–34	1997
261	Moller MB		
	P27 in cell cycle control and cancer	20 .10 07	2000
262	Moller MB Nielsen O and Pedersen NT	33.19-27	2000
202	Cyclin D3 expression in non-Hodgkin lymphoma. Correlation with other cell cyc	cle regulators and clinica	al features
	American Journal of Clinical Pathology	115 :404–12	2001
263	Morris EJ and Dyson NJ	oonooroontor/hinding ht	mΛ
	Advances in Cancer Research	82:1–54	2001
264	Morrison AJ, Sardet C and Herrera RE		
	Retinoblastoma protein transcriptional repression through histone deacetylation	n of a single nucleosom	e
265	Molecular and Cellular Biology Mossi P and Hubscher II	22.800-00	2002
200	Clamping down on clamps and clamp loadersthe eukaryotic replication factor	. С	
	European Journal of Biochemistry	254 :209–16	1998
266	Motta L, Porcaro AB, Ficarra V, D'Amico A, Piubello Q and Comunale L	v for retinoblastoma	
	Scandinavian Journal of Urology and Nephrology	35 :248–9	2001
267	Mukai N, Kobayashi S and Oguri M		
	Ultrastructural studies of human adenovirus-produced retinoblastoma-like neo	plasms in Sprague-Daw	ley rats
268	Mukai N. Nakajima T. Freddo T. Jacobson M and Dunn M	13.000-001	1074
	Retinoblastoma-like neoplasm induced in C3H/BifB/Ki strain mice by human ad	denovirus serotype 12	
	Acta Neuropathologica	39 :147–55	1977
269	Induction of S-phase entry by E2E transcription factors depends on their nucle	ar localization	
	Molecular and Cellular Biology	17 :5508–20	1997
270	Munro J, Stott FJ, Vousden KH, Peters G and Parkinson EK		
	Role of the alternative INK4A proteins in human keratinocyte senescence: evic immortalization	tence for the specific ina	activation of p16INK4A upon
	Cancer Research	59 :2516–21	1999
271	Nagahara H, Ezhevsky SA, Vocero-Akbani AM, Kaldis P, Solomon MJ and Do	wdy SF	
	Transforming growth factor beta targeted inactivation of cyclin E:cyclin-depend	lent kinase 2 (Cdk2) cor	mplexes by inhibition of Cdk2
	Proceedings of the National Academy of Sciences of the USA	96 :14961–6	1999
272	Nagata D, Suzuki E, Nishimatsu H, Satonaka H, Goto A, Omata M and Hirata	Y	
	Transcriptional activation of the cyclin D1 gene is mediated by multiple cis-eler	ments, including SP1 sit	es and a cAMP-responsive
	Journal of Biological Chemistry	276 :662–9	2001
273	Nakamura M, Yonekawa Y, Kleihues P and Ohgaki H		
	Promoter hypermethylation of the RB1 gene in glioblastomas	01 .77 00	2001
274	Nakamura T. Monden Y. Kawashima K. Naruke T and Nishimura S.	01.77-02	2001
	Failure to detect mutations in the retinoblastoma protein-binding domain of the	transcription factor E2F	-1 in human cancers
	Japanese Journal of Cancer Research	87 :1204–9	1996
275	Nakanishi M, Kaneko Y, Matsushime H and Ikeda K Direct interaction of p21 cyclin-dependent kinase inhibitor with the retinoblasto	ma tumor suppressor pr	rotein
	Biochemical and Biophysical Research Communications	263 :35–40	1999
276	Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh	n DY and Nakayama K	
	Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia	a, retinal dysplasia, and	pituitary tumors
277	Nakavama K and Nakavama K	UU .101-20	1000
	Cip/Kip cyclin-dependent kinase inhibitors: brakes of the cell cycle engine durin	ng development.	
070	Bioessays	20 :1020–9	1998
210	Rb binds c-Jun and activates transcription		
	EMBO Journal	17 :2342–52	1998

279	Nelson MA, Ariza ME, Yang JM, Thompson FH, Taetle R, Trent JM, Wymer J, M	lassey-Brown K, Broor	me-Powell M, Easton J, Lahti
	Abnormalities in the p34cdc2-related PITSLRE protein kinase gene complex (CD Cancer Genetics and Cytogenetics	0C2L) on chromosome 08:91–9	band 1p36 in melanoma 1999
280	Ng MH, Chung YF, Lo KW, Wickham NW, Lee JC and Huang DP Frequent hypermethylation of p16 and p15 genes in multiple myeloma		
281	Blood Nicolas E. Morales V. Magnaghi-Jaulin L. Harel-Bellan A. Richard-Fov H and Tro	9:2500–6 ouche D	1997
	RbAp48 belongs to the histone deacetylase complex that associates with the reti Journal of Biological Chemistry 2	inoblastoma protein 175:9797–804	2000
282	Noh SJ, Li Y, Xiong Y and Guan KL Identification of functional elements of p18INK4C essential for binding and inhibit Cancer Research 5	tion of cyclin-depender 9:558–64	nt kinase (CDK) 4 and CDK6 1999
283	Nord B, Platz A, Smoczynski K, Kytola S, Robertson G, Calender A, Murat A, We	eintraub D, Burgess J,	Edwards M, Skogseid B,
	Malignant melanoma in patients with multiple endocrine neoplasia type 1 and inv International Journal of Cancer 8	olvement of the MEN1 7:463–7	l gene in sporadic melanoma 2000
284	Ohtani-Fujita N, Dryja TP, Rapaport JM, Fujita T, Matsumura S, Ozasa K, Watan Matsumura T, Ohnishi Y, Hotta Y, Takahashi R, Kato MV, Ishizaki K, Sasaki MS, Hypermethylation in the retinoblactoma gene is associated with unilateral sporad	nabe Y, Hayashi K, Ma , Horsthemke B, Minoc dic retinoblastoma	ieda K, Kinoshita S, da K and Sakai T
	Cancer Genetics and Cytogenetics	8:43–9	1997
285	Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD and Sakai T CpG methylation inactivates the promoter activity of the human retinoblastoma tu Oncogene 8	umor-suppressor gene	1993
286	Ohtani-Fujita N, Fujita T, Takahashi R, Robbins PD, Dryja TP and Sakai T A silencer element in the retinoblastoma tumor-suppressor gene		
	Oncogene 9	:1703–11	1994
287	Omura-Minamisawa M, Diccianni MB, Batova A, Chang RC, Bridgeman LJ, Yu J. Universal inactivation of both p16 and p15 but not downstream components is an acute lymphoblastic leukemia	, Pullen J, Bowman W n essential event in the	/P and Yu AL e pathogenesis of T-cell
000	Clin Cancer Research 6	:1219–28	2000
288	Expression of cyclin D1, but not cyclins E and A, is related to progression in bilha <i>Clin Cancer Research</i> 3	arzial bladder cancer 2247–51	1997
289	Oya M and Schulz WA Decreased expression of p57(KIP2)mRNA in human bladder cancer		
200	British Journal of Cancer 8	3 :626–31	2000
290	AATF, a novel transcription factor that interacts with Dlk/ZIP kinase and interferes FEBS Letters 4	s with apoptosis 62 :187–91	1999
291	Page K, Li J and Hershenson MB Platelet-derived growth factor stimulation of mitogen-activated protein kinases an	nd cvclin D1 promoter	activity in cultured airway
	smooth-muscle cells. Role of Ras American Journal of Respiratory Cell and Molecular Biology 2	0 :1294–302	1999
292	Pan W, Cox S, Hoess RH and Grafstrom RH A cyclin D1/cyclin-dependent kinase 4 binding site within the C domain of the reti Cancer Research 6	inoblastoma protein 1:2885–91	2001
293	Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D and Moustakas A		
294	Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation Journal of Biological Chemistry 2 Pardee AB	by transforming growt 75:29244–56	n factor-beta 2000
201	A restriction point for control of normal animal cell proliferation Proceedings of the National Academy of Sciences of the USA 7	1 :1286–90	1974
295	Park K, Choe J, Osifchin NE, Templeton DJ, Robbins PD and Kim SJ The human retinoblastoma susceptibility gene promoter is positively autoregulate	ed by its own product	
296	Journal of Biological Chemistry 2 Park YE, Choi KC and Choi YH	69 :6083–8	1994
	p21 expression and mutation in gastric carcinoma: analysis by immunohistochem <i>Journal of Korean Medical</i>	nistry and PCR-SSCP 3:507–12	1998
297	Parry D, Mahony D, Wills K and Lees E Cyclin D-CDK subunit arrangement is dependent on the availability of competing Molecular and Cellular Biology	INK4 and p21 class ir	nhibitors 1999
298	Payton M and Coats S Cyclin E2, the cycle continues	0.1110.00	1000
299	International Journal of Biochemistry and Cell Biology 3 Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio , Descience Una United to the cell cells are blocked by the blocked processing of the second second second second	4 :315–20 JA and Ewen ME	2002
	Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein Nature 3	86:177–81	1997
300	Pelengaris S, Rudolph B and Littlewood T Action of Myc in vivo - proliferation and apoptosis	0 :100_5	2000
301	Pennaneach V, Salles-Passador I, Munshi A, Brickner H, Regazzoni K, Dick F, D Fotedar A	Dyson N, Chen TT, Wa	ing JY, Fotedar R and
0.6-5	The large subunit of replication factor C promotes cell survival after DNA damage Molecular Cell 7	e in an LxCxE motif- a :715–27	nd Rb-dependent manner 2001
302	Perez-Roger I, Kim SH, Grittiths B, Sewing A and Land H Cyclins D1 and D2 mediate myc-induced proliferation via sequestration of p27(Ki EMBO Journal	ip1) and p21(Cip1) 8 :5310–20	1999
303	Pham AD and Sauer F		aanhila
	Science 2	ene expression in Dro 89:2357–60	2000

304	Phillips AC and Vousden KH		
	Apoptosis	6 :173–82	2001
305	Polager S, Kalma Y, Berkovich E and Ginsberg D	0	
	E2Fs up-regulate expression of genes involved in DNA replication, DNA repair Oncogene	and mitosis 21 :437–46	2002
306	Polanowska J, Le Cam L, Orsetti B, Valles H, Fabbrizio E, Fajas L, Taviaux S,	Theillet C and Sardet C	 }
	Human E2F5 gene is oncogenic in primary rodent cells and is amplified in hum Genes. Chromosomes and Cancer	an breast tumors 28 :126–30	2000
307	Puga A, Barnes SJ, Dalton TP, Chang Cy, Knudsen ES and Maier MA	20.120 00	
	Aromatic hydrocarbon receptor interaction with the retinoblastoma protein pote	ntiates repression of E2	2F-dependent transcription
	Journal of Biological Chemistry	275 :2943–50	2000
308	Puri PL, lezzi S, Stiegler P, Chen TT, Schiltz RL, Muscat GE, Giordano A, Kede	es L, Wang JY and Sar	torelli V
	Class I histone deacetylases sequentially interact with MyoD and pRb during sl Molecular Cell	keletal myogenesis 8 :885–97	2001
309	Qian YW and Lee EY		
	Dual retinoblastoma-binding proteins with properties related to a negative regul	ator of ras in yeast	1005
310	Qin XQ, Chittenden T, Livingston DM and Kaelin WG, Ir	210.25507-15	1995
010	Identification of a growth suppression domain within the retinoblastoma gene p	roduct	
	Genes and Development	6 :953–64	1992
311	Quesnel B, Preudhomme C, Lepelley P, Hetuin D, Vanrumbeke M, Bauters F, Transfer of n16inka/CDKN2 gene in Jaukaemic cell lines inhibits cell proliferation	Velu T and Fenaux P	
	British Journal of Haematology	95 :291–8	1996
312	Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E,	Aveyard J, Sibley K, W	/hitaker L, Knowles M, Bishop
	JN and Bishop DT		.,
	A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural syster Human Molecular Genetics	n tumour syndrome fan 10:55–62	nily 2001
313	Rane SG, Cosenza SC, Mettus RV and Reddy EP	10.00 02	2001
	Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis a	nd escape from cellular	senescence
	Molecular and Cellular Biology	22 :644–56	2002
314	Recio JA and Merlino G Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells	s through n38 MAPK	TE-2 and cyclin D1
	Oncogene	21 :1000–8	2002
315	Rizos H, Darmanian AP, Indsto JO, Shannon JA, Kefford RF and Mann GJ		
	Multiple abnormalities of the p16INK4a-pRb regulatory pathway in cultured mel	anoma cells	1000
316	Relational Research	9 :10–9	1999
510	Amplification of the cyclin-dependent kinase 4 (CDK4) gene is associated with	high cdk4 protein levels	s in glioblastoma multiforme
	Acta Neuropathol ogica	92 :70–4	1996
317	Rosenberg CL, Wong E, Petty EM, Bale AE, Tsujimoto Y, Harris NL and Arnold	1 A	
	PRAD1, a candidate BCL1 oncogene: mapping and expression in centrocytic is Proceedings of the National Academy of Sciences of the USA	/mpnoma 88·9638–42	1991
318	Roussel MF	UU .0000 42	1001
	The INK4 family of cell cycle inhibitors in cancer		
040	Oncogene	18 :5311–7	1999
319	Site-specific and temporally-regulated retinoblastoma protein dephosphorylation	n by protein phosphata	se type 1
	Oncogene	20 :3776–85	2001
320	Rustgi AK, Dyson N and Bernards R		
	Amino-terminal domains of c-myc and N-myc proteins mediate binding to the re	etinoblastoma gene pro	duct
321	Saito M Helin K Valentine MB Griffith BB Willman CL Harlow F and Look AT	-	1991
	Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia	cell line	
	Genomics	25 :130–8	1995
322	Sakai T, Ohtani N, McGee TL, Robbins PD and Dryja TP		
	Nature	353 :83–6	1991
323	Sakai Y, Saijo M, Coelho K, Kishino T, Niikawa N and Taya Y		
	cDNA sequence and chromosomal localization of a novel human protein, RBQ-	-1 (RBBP6), that binds	to the retinoblastoma gene
	Genomics	30 ·98–101	1995
324	Sandhu C, Donovan J, Bhattacharya N, Stampfer M, Worland P and Slingerlan	d J	
	Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in	human mammary epith	nelial cells
205	Oncogene	19 :5314–23	2000
325	The role of cyclin F in the regulation of entry into S phase		
	Progress in Cell Cycle Research	1 :125–39	1995
326	Savoysky E, Mizuno T, Sowa Y, Watanabe H, Sawada J, Nomura H, Ohsugi Y	, Handa H and Sakai T	
	The retinoblastoma binding factor 1 (RBF-1) site in RB gene promoter binds pre	eferentially E4TF1, a m	ember of the Ets transcription
	Oncogene	9 :1839–46	1994
327	Sayama K, Shirakata Y, Midorikawa K, Hanakawa Y and Hashimoto K		
	Possible involvement of p21 but not of p16 or p53 in keratinocyte senescence	170.40	1000
328	Schmitz MI Hendricks DT Farley I Taylor DD Corodta I Door CS and Direct	1/9:40—4 rMI	1999
520	p27 and cyclin D1 abnormalities in uterine papillarv serous carcinoma	i iviJ	
	Gynecologic Oncology	77 :439–45	2000
329	Schittek B, Sauer B and Garbe C	tionuon and and line -	
	Lack or pro-mutations and late occurrence of pro-allelic deletions in melanoma International Journal of Cancer	82:583-6	1999
	The DD colorestern 20		

- 70
· · · · ·
- to
HO.
p R
p R
p R
e pR
e pR
ne pR
he pR
he pR
lhe pR
The pR

330	Schwemmle S and Pfeifer GP		
000	Genomic structure and mutation screening of the E2F4 gene in human tumors		
	International Journal of Cancer	86 :672–7	2000
331	Schwindinger WF and Robishaw JD		
	Heterotrimeric G-protein betagamma-dimers in growth and differentiation	20 :1652 60	2001
332	Sears RC and Nevins IR	20.1000-00	2001
002	Signaling networks that link cell proliferation and cell fate		
	Journal of Biological Chemistry	in press	2002
333	Seoane J, Pouponnot C, Staller P, Schader M, Eilers M and Massague J		
	TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4	4b 2 :400 0	2004
334	Nature Cell Biology Shan R. Chang CY. Jones D and Lee WH	3 :400–8	2001
554	The transcription factor E2F-1 mediates the autoregulation of RB gene express	sion	
	Molecular and Cellular Biology	14:299-309	1994
335	Shao Z, Ruppert S and Robbins PD		
	The retinoblastoma-susceptibility gene product binds directly to the human TA	TA-binding protein-asso	ciated factor TAFII250
226	Proceedings of the National Academy of Sciences of the USA	92:3115-9	1995 Dinho DA
550	Loss of p16lnk4a with retention of p19Arf predisposes mice to tumoridenesis	u EA, HOITIEL JVV allu D	
	Nature	413 :86–91	2001
337	Shaulian E and Karin M		
	AP-1 in cell proliferation and survival	aa aaaa 4aa	0004
000	Oncogene	20 :2390–400	2001
338	Snaughnessy J Jr, Gabrea A, QI Y, Brents L, Zhan F, Tian E, Sawyer J, Barlog Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to	jie B, Bergsagei PL and immunoglobulin loci in r	Kueni M nultiple myeloma
	Blood	98:217–23	2001
339	Shay JW and Wright WE Nat Rev		
	Hayflick, his limit, and cellular ageing		
	Molecular and Cellular Biology	1:72–6	2000
340	Shennan MG, Badin AC, Walsh S, Summers A, From L, McKenzie M, Goldstei	in AM, Tucker MA, Hogo	g D and Lassam N
	Oncogene	19 :1849–52	2000
341	Sherr CJ Nat Rev		
	The INK4a/ARF network in tumour suppression		
	Molecular and Cellular Biology	2 :731–7	2001
342	Sherr CJ		
	D-type cyclins. Trends in Biochemical Sciences	20 ·187_90	1995
343	Shi Y. Zou M. Farid NR and al Sedairy ST	20.101 00	1000
	Evidence of gene deletion of p21 (WAF1/CIP1), a cyclin-dependent protein kin	ase inhibitor, in thyroid	carcinomas
	British Journal of Cancer	74 :1336–41	1996
344	Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R and Be	n Ze'ev A	
	The cyclin D I gene is a largel of the bela-catenin/LEF-I pathway Proceedings of the National Academy of Sciences of the USA	96 ·5522_7	1999
345	Siebert R Willers CP Schramm A Fossa A Dresen IM Uppenkamp M Nowr	ousian MR Seeber S a	nd Onalka B
010	Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoma	nphoblastic leukaemia d	cell lines
	British Journal of Haematology	91 :350–4	1995
346	Siegert JL and Robbins PD	T. 5.1050	
	Rb inhibits the intrinsic kinase activity of TATA-binding protein-associated facto	or IAFII250	1000
347	Signert II, Rushton II, Sellers WR, Kaelin WG, Ir and Robbins PD	13.040-04	1999
547	Cyclin D1 suppresses retinoblastoma protein-mediated inhibition of TAFII250 k	inase activity	
	Óncogene	19 :5703–11	2000
348	Simon M, Koster G, Menon AG and Schramm J		
	Functional evidence for a role of combined CDKN2A (p16-p14(ARF))/CDKN2B	(p15) gene inactivation	in malignant gliomas
240	Acta Neuropatriologica	98.444-52	1999
549	Loss of pRb expression in pituitary adenomas is associated with methylation of	f the RB1 CpG island	
	Cancer Research	60 :1211–6	2000
350	Singer JD, Gurian-West M, Clurman B and Roberts JM		
	Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian	cells	4000
054	Genes and Development	13 :2375–87	1999
351	Smith EJ, Leone G and Nevins JR Distinct mechanisms control the accumulation of the Rh-related p107 and p130) proteins during cell ar	wth
	Cell Growth and Differentiation	9 :297–303	1998
352	Sotillo R, Dubus P, Martin J, de la Cueva E, Ortega S, Malumbres M and Barba	acid M	
	Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive t	o INK4 inhibitors	
	EMBO Journal	20 :6637–47	2001
353	Sotillo R, Garcia JF, Ortega S, Martin J, Dubus P, Barbacid M and Malumbres	Μ	
	Proceedings of the National Academy of Sciences of the USA	98 ·13312–7	2001
354	Soufir N, Avril MF, Chompret A, Demenais F, Bombled J. Spatz A, Stoppa-Lvo	nnet D, Benard J and B	ressac de Paillerets B
	Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone familie	es in France. The Frenc	h Familial Melanoma Study
	Group	7.000 10	1000
255	numan Molecular Genetics	Abroham IM Distance //	1998 Simma L. Largatt D. D.
300	JOURA DE TIU J SUIOUSKUNN ZOU LE WARD S SNEYU KNVU MU COTTELL	, Auranam Jivi, Biden K.	SITILITS L, LEUGELT B, BOVA
	GS. Frank T. Powell SM. Sugimura H. Young J. Harpaz N. Shimizu K. Matsuba	ara N and Meltzer S.I	
	GS, Frank T, Powell SM, Sugimura H, Young J, Harpaz N, Shimizu K, Matsuba Frequent mutation of the E2F-4 cell cycle gene in primary human gastrointestir	ara N and Meltzer SJ nal tumors	

356	Spirin KS, Simpson JF, Takeuchi S, Kawamata N, Miller CW and Koeffler HP		
	p2//Kip1 mutation found in breast cancer Cancer Research	56 ·2400–4	1996
357	Sterner JM, Murata Y, Kim HG, Kennett SB, Templeton DJ and Horowitz JM Detection of a novel cell cycle-regulated kinase activity that associates with the	e amino terminus of the	retinoblastoma protein in
	G2/M phases Journal of Biological Chemistry	270 :9281–8	1995
358	Sterner JM, Tao Y, Kennett SB, Kim HG and Horowitz JM The amino terminus of the retinoblastoma (Rb) protein associates with a cyclin	-dependent kinase-like	kinase via Rb amino acids
	required for growth suppression Cell Growth and Differentiation	7 :53–64	1996
359	Stewart SA and Weinberg RA Senescence: does it all happen at the ends?		
360	Oncogene Stiegler P and Giordano A	21 :627–30	2002
000	The family of retinoblastoma proteins Critical Reviews in Eukaryotic Gene Expression	11 :59–76	2001
361	Stoppler H, Stoppler MC, Johnson E, Simbulan Rosenthal CM, Smulson ME, I The E7 protein of human papillomavirus type 16 sensitizes primary human ker	yer S, Rosenthal DS and atinocytes to apoptosis	d Schlegel R
362	Oncogene Suzuki N, Ueno T, Kaneko A, Fujii S and Fujinaga K	17 :1207–14	1998
	Analysis of retinoblastoma for human adenovirus type 12 genome Graefes Archive for Clinical and Experimental Ophthalmology	220 :167–70	1983
363	Suzuki-Takahashi I, Kitagawa M, Saijo M, Higashi H, Ogino H, Matsumoto H, T The interactions of E2F with pRB and with p107 are regulated via the phospho kinase	Taya Y, Nishimura S and rylation of pRB and p10	d Okuyama A 7 by a cyclin-dependent
	Oncogene	10 :1691–8	1995
364	Szekely L, Jin P, Jiang WQ, Rosen A, Wiman KG, Klein G and Ringertz N Position-dependent nuclear accumulation of the retinoblastoma (RB) protein du Journal of Cellular Physiology	uring in vitro myogenesi: 155 :313–22	s 1993
365	Takahashi K, Nakayama Ki and Nakayama K Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growt	th retardation	
366	Journal of Biochemistry Takano Y, Kato Y, Masuda M, Ohshima Y and Okayasu I	127 :73–83	2000
	Cyclin D2, but not cyclin D1, overexpression closely correlates with gastric can Journal of Pathology	ncer progression and pro 189 :194–200	ognosis 1999
367	Takimoto H, Tsukuda K, Ichimura K, Hanafusa H, Nakamura A, Oda M, Harada Genetic alterations in the retinoblastoma protein-related p107 gene in human h Biochemical and Biophysical Research Communications	a M and Shimizu K nematologic malignancie 251 :264–8	es 1998
368	Tamrakar S and Ludlow JW	volute protein phoophet	has two talets and inhibits
	catalytic activity		
369	Tamrakar S, Rubin E and Ludlow JW	213.27704-9	2000
	Frontiers in Bioscience	5 :D121–37	2000
370	Tan X and Wang JY The caspase-RB connection in cell death.	8 .116 20	1008
371	T'Ang A, Wu KJ, Hashimoto T, Liu WY, Takahashi R, Shi XH, Mihara K, Zhang	g FH, Chen YY, Du C et	al
	Oncogene	4 :401–7	1989
372	Tasaka T, Berenson J, Vescio R, Hirama T, Miller CW, Nagai M, Takahara J a Analysis of the p16INK4A, p15INK4B and p18INK4C genes in multiple myelom Delikite function of the protocol and the p	nd Koeffler HP	1007
373	Templeton DJ	96:98-102	1997
274	Molecular and Cellular Biology	12 :435–43	1992
574	Nonfunctional mutants of the retinoblastoma protein are characterized by defer and nuclear tethering	cts in phosphorylation, v	viral oncoprotein association,
375	Teodoro JG, Shore GC and Branton PE Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-inc	88 :3033-7 dependent mechanisms	1991
376	Oncogene Terry LA, Boyd J, Alcorta D, Lyon T, Solomon G, Hannon G, Berchuck A, Bead	11:467–74 ch D and Barrett JC	1995
077	Mutational analysis of the p21/WAF1/CIP1/SDI1 coding region in human tumor Molecular Carcinogenesis	r cell lines 16 :221–8	1996
577	HBP1: a HMG box transcriptional repressor that is targeted by the retinoblastor Genes and Development	s ma family 11 :383–96	1997
378	Thullberg M, Bartkova J, Khan S, Hansen K, Ronnstrand L, Lukas J, Strauss M Distinct versus redundant properties among members of the INK4 family of cycleters Letters	/I and Bartek J clin-dependent kinase in 470 :161–6	hibitors
379	Toguchida J, McGee TL, Paterson JC, Eagle JR, Tucker S, Yandell DW and D Complete genomic sequence of the human retinoblastoma susceptibility gene	Pryja TP	2000
380	Genomics Toyoshima H and Hunter T	17 :535–43	1993
	p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21	70.67 74	1004

381	Traboulsi El, Zimmerman LE and Manz HJ Cutaneous malignant melanoma in survivors of heritable retinoblastoma.		
382	Archives of Ophthalmology Trimarchi JM and Lees JA Nat Rev	106 :1059–61	1988
	Sibling rivalry in the E2F family		
	Molecular and Cellular Biology	3 :11–20	2002
383	Tsao H, Zhang X, Majewski P and Haluska FG Mutational and expression analysis of the p73 gene in melanoma cell lines <i>Cancer Research</i>	59 :172–4	1999
384	Tsubari M, Tiihonen E and Laiho M Cloning and characterization of p10, an alternatively spliced form of p15 cyclin-	-dependent kinase inhib	bitor
385	Cancer Research	57:2966-73	1997
505	Infrequent mutation of Waf1/p21 gene, a CDK inhibitor gene, in brain tumors Neurologia Medico-Chirurgica	37 :150–6	1997
386	Ueno T, Suzuki N, Kaneko A and Fujinaga K Analysis of retinoblastoma for human adenovirus and human JC virus genome Japanese Journal of Ophthalmology	integration 31 :274–83	1987
387	Unoki M and Nakamura Y Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTI Oncogene	EN signaling pathway 20 :4457–65	2001
388	van Dam H. Duvndam M. Rottier R. Bosch A. de Vries Smits L. Herrlich P. Zan	tema A. Angel P and va	an der Eb AJ
	Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun temporal EMBO Journal	by the 243 amino acid a 12 :479–87	denovirus E1A protein 1993
389	Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibito EMBO Journal	or p27 16 :5334–44	1997
390	Voit R, Schafer K and Grummt I		
391	Mechanism of repression of RNA polymerase I transcription by the retinoblastic Molecular and Cellular Biology Walker G and Havward N	oma protein 17:4230–7	1997
	No evidence of a role for activating CDK2 mutations in melanoma		
	Melanoma Research	11 :343–8	2001
392	Walker GJ, Flores JF, Glendening JM, Lin AH, Markl ID and Fountain JW Virtually 100% of melanoma cell lines harbor alterations at the DNA level withir targets.	n CDKN2A, CDKN2B, o	r one of their downstream
	Genes, Chromosomes and Cancer	22 :157–63	1998
393	Wang CY, Petryniak B, Thompson CB, Kaelin WG and Leiden JM Regulation of the Ets-related transcription factor Elf-1 by binding to the retinobl <i>Science</i>	astoma protein 260 :1330–5	1993
394	Wang JY		
	Regulation of cell death by the Abl tyrosine kinase Oncogene	19 :5643–50	2000
395	Wang S, Ghosh RN and Chellappan SP Raf-1 physically interacts with Rb and regulates its function: a link between mit Melecular and Cellular Biology	ogenic signaling and ce	ll cycle regulation
396	Wang S, Nath N, Adlam M and Chellappan S		1000
	Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F to Oncogene	unction 18 :3501–10	1999
397	Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ and Qin J		
	BASC, a super complex of BRCA1-associated proteins involved in the recognit	tion and repair of aberra	ant DNA structures
398	Wassarman DA and Sauer F	14.927-39	2000
000	TAF(II)250: a transcription toolbox		
	Journal of Cell Science	114 :2895–902	2001
399	Watanabe H, Fukuchi K, Takagi Y, Tomoyasu S, Tsuruoka N and Gomi K Molecular analysis of the Cip1/Waf1 (p21) gene in diverse types of human tum <i>Biochimica et Biophysica Acta</i>	ors 1263 :275–80	1995
400	Wei G, Lonardo F, Ueda T, Kim T, Huvos AG, Healey JH and Ladanyi M		
404	CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A g International Journal of Cancer	gene alterations and ma 80:199–204	apping of 12q13 amplicons 1999
401	Disruption of retinoblastoma protein function by coexpression of its C pocket fra Genes and Development	agment 9 :31–46	1995
402	Welch PJ and Wang JY A C-terminal protein-binding domain in the retinoblastoma protein regulates nu <i>Cell</i>	clear c-Abl tyrosine kina 75 :779–90	ase in the cell cycle 1993
403	Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA a	and Harlow E	
	Association between an oncogene and an anti-oncogene: the adenovirus E1A <i>Nature</i>	proteins bind to the reti 334:124–9	noblastoma gene product 1988
404	vvintner J and Olsen JH Non-ocular cancer in retinoblastoma survivors		
	Acta Ophthalmologica - Supplement	182 :144–7	1987
405	Woitach JT, Zhang M, Niu CH and Thorgeirsson SS A retinoblastoma-binding protein that affects cell-cycle control and confers tran <i>Nature Genetics</i>	sforming ability 19 :371–4	1998
406	Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmannhieb E. Deplac	en E, Hankeln T, Zumbi	uschenfelde KHM and Beach
-	D A p16(INK4a)-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a <i>Science</i>	a human melanoma 269 :1281–1284	1995

407	Wolffe AP, Urnov FD and Guschin D		
	Biochemical Society Transactions	28 :379–86	2000
408	Won KA and Reed SI Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and EMBO Journal	ubiquitin-dependent de 15:4182–93	egradation of cyclin E 1996
409	Woo DK, Lee WA, Kim YI and Kim WH Microsatellite instability and alteration of E2F-4 gene in adenosquamous and s Pathology International	quamous cell carcinoma 50 :690–5	as of the stomach 2000
410	Woo MS, Sanchez I and Dynlacht BD p130 and p107 use a conserved domain to inhibit cellular cyclin-dependent kin <i>Molecular and Cellular Biology</i>	ase activity 17 :3566–79	1997
411	Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR and Livingston I Interaction between the retinoblastoma protein and the oncoprotein MDM2 Nature	375 [.] 694_8	1995
412	Xiao ZX, Ginsberg D, Ewen M and Livingston DM Regulation of the retinoblastoma protein-related protein p107 by G1 cyclin-asso Proceedings of the National Academy of Sciences of the USA	ociated kinases	1996
413	Xing EP, Nie Y, Song Y, Yang GY, Cai YC, Wang LD and Yang CS Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in hur <i>Clin Cancer Research</i>	nan esophageal squam	ious cell carcinoma
414	Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K an c-myc is a downstream target of the Smad pathway	d Kato M	0000
415	Yamanouchi H, Furihata M, Fujita J, Murakami H, Yoshinouchi T, Takahara J a Expression of cyclin E and cyclin D1 in non-small cell lung cancers	and Ohtsuki Y	2002
416	Lung Cancer Yamasaki I	31 :3–8	2001
-10	Balancing proliferation and apoptosis in vivo: the Goldilocks theory of E2F/DP a Biochimica et Biophysica Acta	action 1423 :M9–15	1999
417	Yamasaki L, Bronson R, Williams BO, Dyson NJ, Harlow E and Jacks T Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/-)mice Nature Genetics	18 :360–4	1998
418	Yamasaki L Growth regulation by the E2F and DP transcription factor families Results and Problems in Cell Differentiation	22 ·199–227	1998
419	Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E and Dyson NJ Tumor induction and tissue atrophy in mice lacking E2F-1		1000
420	Cell Yen A. Coder D and Varvavanis S	85 :537–48	1996
	Concentration of RB protein in nucleus vs. cytoplasm is stable as phosphorylat differentiation	ion of RB changes duri	ng the cell cycle and
404	European Journal of Cell Biology	72 :159–65	1997
421	Expression of p16 and lack of pRB in primary small cell lung cancer Journal of Pathology	189 :358–62	1999
422	Zalvide J, Stubdal H and DeCaprio JA The J domain of simian virus 40 large T antigen is required to functionally inact Molecular and Cellular Biology	ivate RB family proteins 18 :1408–15	s 1998
423	Zamparelli A, Masciullo V, Bovicelli A, Santini D, Ferrandina G, Minimo C, Terz Scambia G, Bovicelli L and Giordano A	ano P, Costa S, Cinti C	, Ceccarelli C, Mancuso S
424	Expression of cell-cycle-associated proteins pRB2/p130 and p27kip in vulvar si Human Pathology Zarkowska T and Mittnacht S	quamous cell carcinoma 32:4–9	as 2001
405	Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-depen Journal of Biological Chemistry	ident kinases 272 :12738–46	1997
425	DNA polymerase delta is involved in the cellular response to UV damage in hur Journal of Biological Chemistry	man cells 269 :13748–51	1994
426	Zhang SY, Liu SC, Johnson DG and Klein Szanto AJ E2F-1 gene transfer enhances invasiveness of human head and neck carcinon <i>Cancer Research</i>	na cell lines 60 :5972–6	2000
427	Zheng L, Chen Y, Riley DJ, Chen PL and Lee WH Retinoblastoma protein enhances the fidelity of chromosome segregation medi Molecular and Cellular Biology	ated by hsHec1p 20 :3529–37	2000
428	Zhong X, Hemmi H, Koike J, Tsujita K and Shimatake H Various AGC repeat numbers in the coding region of the human transcription fa	actor gene E2F-4	2000
429	Zindy F, van Deursen J, Grosveld G, Sherr CJ and Roussel MF INK4d-deficient mice are fertile despite testicular atrophy	15.290-7	2000
430	Molecular and Cellular Biology Zukerberg LR, Yang WI, Gadd M, Thor AD, Koerner FC, Schmidt EV and Arno	20 :372–8 Id A	2000
	Cyclin D1 (PRAD1) protein expression in breast cancer: approximately one-thir overexpression of the cyclin D1 oncogene	d of infiltrating mamma	ry carcinomas show
431	Modern Pathology Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N an	8 :560–7 Id Dracopoli NC	1995
	Germine mutations in the p16INK4a binding domain of CDK4 in familial melan Nature Genetics	oma 12 :97–9	1996