

Excerpted and adapted from the Ph.D thesis entitled:

Human metastatic melanoma in vitro

in which it appeared as Appendix F.

Geoffrey A. Charters

The Auckland Cancer Society Research Centre

The University of Auckland

New Zealand

2007

Symbols used:

[number]

Data from a non-human model, generality uncertain Reference thus tagged is a review article Reference to the correspondingly labelled part of the table or figure last cited in the text

While great advances have been made against many human diseases, cancer still challenges us, and remains a major contributor to human misery. The last 50 years have seen many improvements in treatment and survival, but we are still no better at preventing or curing cancer than in 1950.

cancer	noun [mass noun] a disease caused by an uncontrolled division of abnormal cells in a part of the body. [count noun] a malignant growth or tumour resulting from such a division of cells.				
malignant	ignant adjective (of a tumour) tending to invade normal tissue or to recu after removal; cancerous. Contrasted with benign.				
tumour	noun a swelling of a part of the body, generally without inflammation, caused by an abnormal growth of tissue, whether benign or malignant.				
	The New Oxford Dictionary of English ²⁰³				

1 The scourge of cancer

It is a rare person indeed who has not had their life scarred by cancer in some way. It seems that every family has a member, and every person, a friend, who has been stricken by cancer, suffered and ultimately died. Those afflicted must face the shock of diagnosis, with its attendant confrontation with mortality, make difficult choices concerning treatment, endure sometimes protracted, painful, disfiguring, nauseating, and even dehumanising therapy with no certainty of cure, wait anxiously for destiny to deliver its verdict, and, ultimately, may have to accept that their only prospect is a relentless decline into death. Simultaneously, those who surround them must deal with the realities of assisting a friend to live, and possibly to die, desperately wishing things were otherwise but being powerless to alter them. Cancer is indeed a potent and multi-faceted contributor to human misery.

With the advent of improved sanitation and nutrition, the appreciation of antisepsis, and the development of drugs, antibiotics and vaccines, most of the diseases that have ravaged humanity over history can now be controlled. Smallpox has been declared extinct, and polio will soon join it. Bubonic plague, cholera, and typhus are no longer the threat they once were and exist not through a lack of understanding of their character or effective therapies, but due to poverty, politics, and the motivation for corporate profit. The impacts of influenza, diphtheria, and tuberculosis have been substantially reduced by immunisation. With mortality due to these causes declining, others such as heart disease, stroke, and diabetes take on greater importance. Here too, preventative, medicinal, and surgical procedures exist to limit their impact. Old foes may have temporary resurgence, as with antibiotic-resistant tuberculosis and new strains of influenza. New diseases may be recognised and rise to prominence or fall to new therapies: AIDS; Creutzfeldt-Jakob Disease; Alzheimer's Disease; Ebola. Throughout this, cancer remains. While advances have been made on some fronts, overall incidence and mortality rates are higher now than ever before {*See 'Incidence, survival, and mortality', below*}. The armamentarium of medical science has thus far failed to meet this challenge.

2 The nature of cancer

Defining characteristics

Dictionary definitions provide a starting point and are entirely satisfactory for casual use, but here we must delve a little deeper. Cancer is not a disease in the sense that, for example, tuberculosis is a disease. No single causative agent exists and there is no classical set of symptoms at presentation that immediately identifies it; indeed, it can be entirely without symptoms until very late in its progression. It does not affect any particular cell-type, tissue, organ, individual, or even species, nor is any of these spared. It does not always progress at the same rate or in the same manner, nor is the outcome always the same. Cancer, rather than being a single disease, is a family of diseases that share a small set of common attributes.

Chief among these is the existence of an aberration of tissue homeostasis leading to inappropriate net cellular proliferation. Normally, this homeostasis is maintained by a metabolically regulated balance between cell division and cell death. In cancer, one, or more likely both, of these processes is disturbed. The second defining attribute, seen particularly in solid tumours, is the intrusion of these cells into adjoining tissue, termed local invasion. Together, these features form the minimum definition of cancer. A third characteristic is of relevance in animals that are more than ~1 cm in every dimension. Above this scale, it is unlikely that any tumour could grow to a troublesome size relying solely on diffusion for the supply of nutrients and the removal of waste. By presenting itself as a tissue under nutritive stress, a tumour can instigate the creation of new blood vessels to supply it, a process termed angiogenesis. These features together can cause sufficient deterioration in the function of both the tissue of origin and its environs as to be life-threatening. The final and most pernicious attribute of many cancers is their ability to cast cells into circulation that may lodge at distant sites and proliferate there, causing widespread secondary tumours. This process, metastasis, contributes most to the gravity of cancer as a disease, and greatly hinders effective therapy by requiring it to be systemic.

Incidence, survival, and mortality

Data from the National Cancer Institute of the USA for cancer incidence, survival and mortality²¹⁴ {Table 1} provide the sobering information that overall, both incidence and mortality rate have increased since 1950 [1]; we are no better now at preventing or curing cancer than we were then. While disturbing, this observation does not convey the dramatic improvements that have been made in five-year survival rates [2], or the greatly reduced mortality among those under 65 years of age, and in particular those under five {Table 2}. Together with this, but more difficult to quantify, have come dramatic improvements in the quality of life enjoyed following therapy, with vastly improved pain control and the availability of extensive rehabilitation.

SUMMARY OF CHANGES IN CANCER INCIDENCE AND MORTALITY, 1950-98 AND

5-YEAR RELATIVE SURVIVAL RATES, 1950-97

Males and Females, By Primary Cancer Site

	All I	Races	Whites					
	Estimated Cancer	Actual Cancer	Perc	ent Char ence	nge 1950- U.S Morta	-98 S. lity	5-Year Surviva (Perce	Relative 1 Rates ent)
Primary Site	Cases in 1998	Deaths in 1998	Total	EAPC	Total	EAPC	1950-54	1989-97
Oral cavity and Pharynx Esophagus Stomach Colon and Rectum Colon Rectum Liver and Intrahep Pancreas Larynx Lung and Bronchus Males Females Melanomas of skin Breast(females) Cervix uteri Corpus and Uterus, NOS Ovary Prostate Testis Urinary bladder Kidney and Renal pelvis Brain and Other nervous Thyroid Hodgkin's disease	30,100 13,200 21,700 135,400 98,200 37,200 16,200 29,200 10,000 169,500 90,700 78,800 51,400 192,200 12,900 38,300 23,400 198,100 7,200 54,300 30,800 17,200 19,500 7,400	7,965 11,764 12,957 56,973 48,814 8,159 12,381 28,335 3,866 154,472 91,397 63,075 7,431 41,736 4,340 6,421 13,390 32,203 370 11,757 11,484 12,666 1,182 1,311	-40.0 -2.7 -78.9 0.6 15.1 -23.3 180.1 13.7 20.0 248.2 169.1 598.0 477.3 63.1 -78.6 3.7 0.7 194.2 124.6 53.8 130.6 69.4 155.3 13.9	$\begin{array}{c} -0.7\\ 0.3\\ -2.6\\ -0.1\\ 0.1\\ 0.7\\ 1.9\\ 0.0\\ 0.1\\ 2.2\\ 1.3\\ 4.3\\ 4.1\\ 1.3\\ -2.8\\ -0.5\\ 0.2\\ 3.2\\ 1.9\\ 0.9\\ 1.9\\ 0.9\\ 1.1\\ 1.8\\ 0.2 \end{array}$	-39.0 24.6 -81.6 -38.2 -24.9 -68.3 34.9 16.1 -18.5 252.5 185.5 617.2 160.4 -14.7 -76.7 -68.2 -4.8 -1.4 -72.5 -35.0 36.4 43.9 -48.88 -75.1	$\begin{array}{c} -1.0\\ 0.4\\ -3.5\\ -0.9\\ -0.4\\ -2.8\\ 0.5\\ 0.1\\ -0.3\\ 2.8\\ 2.3\\ 5.2\\ 2.1\\ -0.1\\ -3.5\\ -2.2\\ 2.1\\ -0.1\\ -3.5\\ -3.5\\ -3.5\end{array}$	46 4 12 37 41 1 52 6 5 9 49 60 59 72 30 43 57 53 34 21 80 30	58.4 15.1 20.7 62.0 62.1 61.5 6.1 4.2 66.1 14.8 13.3 16.8 89.0 86.8 71.5 85.8 51.5 97.0 95.4 81.0 95.4 84.0
Non-Hodgkin's lymphomas Multiple myeloma Leukemias Childhood(0-14 yrs) All sites excluding Lung and Bronchus	56,200 14,400 31,500 8,800 1,098,500	23,434 10,311 20,469 1,456 387,047	185.1 222.8 11.0 35.1 46.3	2.8 1.7 0.2 0.8 0.8	138.1 199.0 -6.1 -68.4 -20.8	1.6 2.1 -0.4 -2.8 -0.4	33 6 10 20 38	54.2 28.0 46.0 78.5 70.4
All Sites	1,268,000	541,519	59.3	1.0	3.1	0.2	35	63.1 2

EAPC = estimated annu	al percent change.	Highlighting addec	Í.

Table 1: Cancer incidence and survival rates in the USA (1950–1997/8)²¹⁴

All Primary Cancer Sites Combined

						Total
				Estimated	i Annual	Percent
				Percent	Change	Change
Age Group	1950	1975	1998	1950-75	1975-98	1950-98
0-4	11.1	5.2	2.3	-2.8	-3.0	-77.5
5-14	6.6	4.7	2.6	-1.0	-2.8	-59.6
15-24	8.5	6.6	4.5	-0.7	-1.8	-48.2
25-34	19.8	14.6	10.9	-1.2	-1.1	-43.6
35-44	64.2	53.9	38.9	-0.4	-1.3	-38.4
45-54	175.2	179.2	134.2	0.2	-1.2	-22.6
55-64	394.0	423.2	385.9	0.3	-0.3	-0.7
65-74	700.0	769.8	830.2	0.4	0.4	19.4
75-84	1160.9	1156.0	1320.3	0.0	0.6	14.7
85+	1450.7	1437.9	1751.4	-0.2	0.9	21.5
All Ages	158.1	162.3	161.5	0.1	0.0	3.1

Mortality rates are per 100 000 of population. Highlighting added.

Table 2: Cancer mortality rates in the USA (1950–1998)²¹⁴

3 The cause of cancer

Scope of aetiology

Our understanding of cancer aetiology has advanced from ascribing it to an excess of black bile, to failure of the lymphatic system, to flaws in the biochemical control of cellular proliferation, to defects in the interplay between the genome and its environment. The current scope of our enquiry ranges mostly from the molecular to the organismic, but excursions to scales beyond these are sometimes made.

The prerequisites for cancer

The defining characteristics of cancer introduced above impose restrictions on the context in which cancer can develop. The characteristic of cellular proliferation implies the need both for regulated cellular growth, lest cells swell or dwindle in size as they increase in number, and the near-perfect transmission of modus operandi from one cellular generation to the next, lest the ability to survive and propagate be lost. To say this may seem to be no more than to say that life is a prerequisite for cancer, a fundamental notion indeed, but there are further implications. The first is that the organism must be multicellular for there to be any distinction between cellular proliferation and organismic replication. The second is that the life span of the organism as a whole must be considerably greater than that of its constituent cells, or it would die before aberrant cellular proliferation could be of any consequence. This further implies that there must be continual death and replacement of cells within the organism. The characteristic of local invasion requires that the organism be comprised of functionally distinct cell-types organised into tissues. Functional diversity implies a controlled mechanism of cellular differentiation, which implies an external agency by which the fates of cells can be independently determined. The relationship between incubation temperature and hatchling sex in many reptile species is one example^{§279}. The characteristic of angiogenesis implies that the proliferation rate of one cell-type can be influenced by another, as can tissue architecture. This leads to the formal requirement of a means of intercellular communication. Once this is granted, the possibilities for the control of cell differentiation are also expanded dramatically by allowing tissue patterning to be determined parentally, rather than physically, as exemplified by the role of morphogens in ontogenesis⁸²⁶⁹. The characteristic of metastasis requires the presence of a transport mechanism within the organism, further reinforcing the need for tissue differentiation.

Human tumorigenesis

Multi-step tumorigenesis

Ultimately, all life processes are the result of the interaction of the genome and its environment within the bounds of physical laws, and this is therefore true of tumorigenesis. Current theory holds that cancer begins with a single cell sustaining a transmissible alteration that confers on it some growth advantage over its neighbours. It may reduce dependency on extracellular growth stimulation, or reduce sensitivity to extracellular growth repression. It may be something that increases the probability that the cell will divide, or reduces the probability that it will die. The alteration may interfere with its ability to maintain its genome, thus increasing the chance that further growth-advantageous alterations may occur and propagate. This leads directly to the concept of multi-step tumorigenesis, where cells gradually accumulate new attributes and become increasingly abnormal. A corollary of this is that tumours are clonal, a much-overworked term. Here, 'clonal' cannot be construed to mean that all cells comprising a tumour at any stage are genetically identical, indeed, there may be great genetic variability within tumours. It must instead be taken to mean that tumours ultimately originate from a single progenitor cell, but since this is true of any tissue in the body, it is hardly a distinction. What makes this statement

of value is that tumours may be derived from a cell already substantially differentiated and so have attributes that are characteristic of a particular cell-type.

As stated, each alteration that confers a growth advantage must be transmissible. This is generally taken to be synonymous with heritable, that is, transmitted by a cell to its descendants during cell division, but it need not be so. Transmission by viral infection also figures in tumorigenesis, as with human papillomavirus (HPV)^{®58} and Epstein-Barr virus (EBV)^{®189}. Whatever the mode, the nature of the alteration cannot be so disruptive as to prevent its transmission. Thus a tumorigenic virus cannot kill its host cell before replicating, a somatic gene mutation cannot prevent cell division, and, at a higher level, carriage of a germ-line mutation cannot have a phenotype that is invariably lethal during childhood.

Tumour-suppressor genes and oncogenes

The attempt to understand the interaction between genome and environment benefits greatly from the overlaps among epidemiology, biochemistry, molecular biology, and molecular genetics. Thus environmental factors implicated in causing the critical alteration, carcinogens, have been identified; the natures of the alterations made have been characterised at a molecular level; and the implications of these changes at the cellular level have been explored. In this way, many carcinogens have been found to be mutagens, that is, agencies of genetic alteration, as with γ -radiation and benzo[*a*]pyrene. An extremely valuable tool has been the study of hereditary syndromes in which predisposition toward cancer is prominent among the symptoms⁷⁴. This has led to the identification of many genes that play important roles in the development of cancer, oncogenes, or its prevention, tumour-suppressor genes {Table 3}. Often, when the protein products of these genes are characterised, they are found to interact functionally with others similarly implicated in tumorigenesis. This has led to the identification of protein groups whose elements cooperate to perform a complex, often multi-step function, and this ability may be lost or degraded with the failure of any element. The functions performed by these subsystems are exactly those that would be expected given the prerequisites for the development of cancer. They participate in the control of cellular proliferation and differentiation, genome integrity, and intercellular communication. Those elements that are critical to a subsystem, that link subsystems together, that participate in multiple subsystems, or that can subvert function, are in general those considered to be tumour-suppressors or oncoproteins.

The mutation versus aneuploidy debate

A correlation between gross chromosomal defect and cancer was recognised at least as early as 1914, in which year Theodor Boveri stated that cancer cells contained '...*einen bestimmten, unrichtig kombinierten Chromosomenbestand*' (translation: '...a certain set of incorrectly combined chromosomes') and that '*Dieser ist die Ursache für die Wucherungstendenz, die auf alle Abkömmlinge der Urzelle* [...] *übergeht*' (translation: 'This is the origin of the tendency to rampant growth passed on to all descendants of the original cell'²⁵. In addition to changes in chromosome structure, such as translocations, abnormal chromosome numbers (aneuploidy) are frequently seen, and a loss or imbalance of gene expression may result. It has been proposed that this may be a driving force behind tumorigenesis. With advances in molecular genetics allowing the characterisation of the genome down to the individual nucleotide, oncogenes and tumour-suppressor genes have been recognised, and mutations in these proposed as causes of cancer. That chromosomal aberrations and mutations both occur is not in dispute. The issue is: which is the cause and which the effect?

Familial ade	nomatous po	lyposis ¹⁴⁹
Colorectal ca	ancer, hepato	blastoma ⁸⁵ , thyroid cancer ³³ ¹¹⁹ , brain tumours ⁹⁹
APC ^{86 99}		Mediates adhesion dependence: with β-catenin ²¹⁸ ²³⁴ , E-cadherin ¹¹⁷ , GSK3β ³⁰² , WNT ²⁰⁵ , and by regulating MYC ¹⁰⁵ transcription. Involved in cell motility ²² , microtubule polymerisation ¹⁸⁵ , and kinetochore function ⁷⁶ .
Turcot's syn	drome ^{®122}	
Colorectal ca	ancer, brain t	umours
APC ^{86 99}		see above
PMS2? ^{34 55}		DNA base mismatch detection ^{100 141}
HNPCC ^{®0 2/4}	; Muir-Torre	syndrome
	(4)	etrial cancer, stomach cancer
PMS1 ¹⁸⁸	(4)	DNA base mismatch detection ¹⁰⁰ ¹⁴¹
110	(3)	DNA base mismatch detection ^{100 141}
MLH1 ¹⁶⁰	(2)	Component of the BRCA1-associated genome surveillance complex (BASC).
MSH2 ^{152 249}	(1)	Component of BASC. Forms a mismatch recognition complex with MSH6.
MSH6 ^{37 283}	(5)	Component of BASC. Forms a mismatch recognition complex with MSH2.
TGFBR22 ¹⁶³	(6)	Growth factor receptor serine/threonine protein kinase
101012:	(0)	Growth factor responsiveness ⁷⁰
Xeroderma p Trichothiod	pigmentosum ystrophy, neu ioma	urological abnormalities, cutaneous carcinomas: melanoma ¹³⁷ , squamous and basal
XPA ²⁵⁵	(A)	Damaged DNA binding protein ²⁸⁵
ERCC3 ²⁶⁷	(B)	DNA helicase ¹⁶⁵
XPC^{156}	(C)	Damaged DNA binding protein ²⁸⁵
ERCC2 ⁷⁵	(D)	DNA helicase ²⁴⁸
DDB2 ¹⁸⁷	(E)	Damaged DNA binding protein ¹¹⁵
ERCC4 ²³⁶	(F)	DNA repair endonuclease: with ERCC1 ⁸¹
ERCC5 ¹⁹³	(G)	DNA repair endonuclease ⁹⁵
POLH ²⁹⁴	(variant)	DNA trans-lesion polymerase = DNA pol- η^{168}
ERCC6 ^{47 167}	(CS)	DNA-binding ATPase ²²⁴
Fanconi ana	emia	
Birth defects	, bone marro	w failure, pancytopenia, cancer predisposition: acute myeloid leukaemia ²⁹ , oral
	s cell carcinol	Dual incicion prior to inter strand grass link repair with EBCC/148
FANCA	(A) (B)	Unknown
FAINCE	(D)	Unknown Interferen-y signalling via STAT1 ²⁰⁰ C /M arrest via CDC2 ¹⁴⁵ CASP3 activation
FANCC	(C)	after ionising radiation ⁹⁰ , mediates Fas-sponsored apoptosis ¹³⁹ ²⁷³ .
BRCA2	(D1)	Homologous recombination and DNA repair: with BRCA1 and RAD51 ⁵⁴
FANCD2 ²⁶⁰	(D2)	Unknown
FANCE ⁵⁷	(E)	Unknown
FANCF	(F)	Unknown
FANCG	(G)	Unknown
Wiskott-Ald	rich syndron	ne ^{©194}
Immunodef	iciency, eczei	ma, thrombocytopenia , lymphoreticular tumours, leukaemias, lymphomas ⁵⁰ ¹⁴⁴
		Signal transduction ⁷⁷¹¹⁷⁰ : with EGFR ²⁵¹ , FYN ⁷ ; BTK ⁹¹ , modulated by CDC42
INT A S ⁹⁷		Cytoskeletal organisation ²⁵¹ , chemotavis ⁹⁶ , phagogytosis ¹⁵⁴ , ¹⁶²
VV/15		A pontosis ²¹²
		Megakarvocyte differentiation ¹⁷⁹
Ataxia telan	giectasia ²³⁵ ®2	42
Immunodef	iciency ²⁹² , lyr	nphoma ¹³¹ ¹⁵⁷ ²²¹ , leukaemia ¹⁷⁸ ²⁹⁵ , breast cancer ¹²⁰ ¹²⁵ ²²⁹
		Known substrates ¹³⁴ , BRCA1 ^{49,82} , nibrin ^{289,300} , CHK2 ¹⁶⁹ , p53 ¹³⁰ , ARI, ¹¹ , MDM2 ⁵⁶
ATM ^{216 220}		DNA damage response ^{31 111 252} : as component of BASC; with CHK1 ⁴⁰ , CHK2 ^{169 261} ,
		MDM2 ⁵⁰ , p53 ¹³⁰ ¹⁸³ ²⁸⁰ DNA recombination: as component of BASC
Nijmegen bi	reakage synd	rome ⁶³ 235 @265
Immunodef	iciency, lymr	phoma
NBN ²⁶⁴		DNA damage response: as component of BASC ^{289 300}
Bloom's syn	drome ^{®84}	
Growth defi lymphom	ciency, telan a, oesophage	giectasia, diabetes mellitus, cancer predisposition: leukaemia, Hodgkin's al cancer
DI 1 167		DNA helicase ^{126 158}
BLIVI		DNA damage response: as component of BASC

Table 3: Hereditary conditions that predispose toward cancer (continues overleaf)

Hereditary retinoblast	oma ^{®2,69}
Bilateral paediatric rel	tinoblastoma, osteosarcoma ¹⁶⁶ , melanoma ⁵ ¹² ¹⁸² , bladder cancer ¹⁸¹
Diluceiui pucciuciie iei	nPB-related (nocket protein) ⁴³
DD162 108 161 225	Call ends are precisive $(C_{1})^{1/2}$ with E2E1
KBI	Cell-cycle progression (G ₁) : with E2F1
	Control of differentiation"
von Hippel-Lindau sy	ndrome ⁴⁴ 48 ©51 ©79 196
Renal cell carcinoma,	pheochromocytoma, CNS hemangioblastoma, pancreatic cancer ¹⁶⁴ , astrocytoma ¹⁸⁶ ,
Hodgkin's disease ⁶¹	
8	Transcription elongation inhibitor ¹⁸⁴
VHI 293 297	Libiquitin F2 ligage ⁴⁵
VIIL	Consult is the response $2^{2/2}$ rise $r^{2/7/33}$
@ <u>291</u>	Growin factor response , via p2/
Wilms' tumour ^{®201} ; De	nys-Drash syndrome ¹³⁹
Paediatric kidney tum	our, leukaemia ²⁰⁸ ²⁵⁰ , breast cancer ²³⁷ , adult renal cell carcinoma ³⁰
	Transcription factor ⁶⁵ ¹⁵³ ²⁷⁶
WT1 ^{94 177}	Cell-cycle progression $(G_1)^{146}$, via RBBP7 ⁸⁸ , p21 ⁷¹
	Apoptosis control via BCL 2 ¹⁷² ¹⁷⁷
Multiple on de avine ne	
Multiple endocrine ne	
Endocrine tumours: pi	ituitary, parathyroid, pancreas, peptic ulcer disease , melanoma ²⁴
MEN11 ³⁶	Transcription co-factor
IVIEINI	Specifically binds and inhibits the JUND transcription factor ³
Peutz-Jeohers syndror	ne ^{®175}
A denocarcinoma ²³ , col	on ⁶⁴ breast testis ovary biliary tract ²⁴⁷ pancroas ²⁴⁷ melanoma ⁹² ²¹⁷
Auchocarchionia . Col	
STK11 ¹⁰⁷ ¹²³	Serine/threonine kinase
01101	Unknown function
Li-Fraumeni syndrom	e ^{®73}
Sarcoma, brain tumou	rs^{24} , breast cancer
	Transcription factor ¹⁷¹
	A population function R^{13} 17 87, with RAX^{27} BCI 2 ¹⁸⁰
TD52116	$ \begin{array}{c} A \ b \ b \ b \ c \ b \ c \ c \ b \ c \ c$
11955	Cen-cycle progression: Via CDKNIA, GADD45
	Genomic stability of a
	DNA damage response ²⁸² : with ATM ¹³⁰ ¹⁸³ ²⁸⁰ ATR ²⁵⁸ , CHK1 ²³³ , CHK2 ³⁸ ¹¹⁰ ²³³ ²⁶¹
	Serine(/threonine?) protein kinase
CHEK2 ¹⁶	DNA damage response: with ATM, p53 ¹¹⁰ ²³³ ²⁶¹
	Cell-cycle progression: via $CDC25^{38}$
Nourofibromatoria I®1	
Fibre a true alsie terre	
Fibromatous skin tum	ours, care au lait spots, pheochromocytoma, meningioma, glioma, astrocytoma
NF1 ²⁸⁷	GTPase-activating protein ^{10*}
	Signal transduction: modulates RAS activity ²⁹⁹
Neurofibromatosis II [®]	772
Bilateral acoustic schy	vannoma, meningioma ²⁶³
	Earin radixin mossin family (EPM) protoin ²⁸ ¹¹² ¹⁷⁶
NF2 ^{136 173 201}	Cill down all with 93 138 and all with a fore down 230
	Centuar adhesion and adhesion dependence
Gorlin syndrome ^{®52}	
Multiple developmen	tal defects, basal cell carcinoma, medulloblastoma
	Trans-membrane receptor protein: Sonic hedgehog signalling (with
PTCH ^{98 124}	Smoothened) ²⁴⁵
-	Chromosomal stability ²²⁸
Multiple harrenter	vindromei Courden syn drome ⁸⁶⁸
Multiple namartoma s	iynarome, Cowaen synarome
Wultiple hamartomas	(skin, mucous membrane, breast, thyroid, intestine), brain tumours, prostate cancer,
melanoma ³²	
	Dual specificity (Tyr, Ser/Thr) protein phosphatase; lipid phosphatase
DCID 1/39	Cell-cycle progression (G ₁): via $PI3K^{20}$ ²⁶⁶ , cyclin- $D1^{278}$, $p21^{286}$ and $p27^{155}$ ²⁷⁸
PIEN	Apoptotic control ²⁷⁷
	Cell adhesion and migration ²⁵⁴ , via FAK^{253}
Malanama actua est	a sundromo ^{®128}
Malanama-astrocytom	a Synutonie
ivielanoma, neural tun	nours, commonly astrocytoma
$CDKN2 A^{78}$	ARF: Degradation targeting ²¹⁰
CDIMIN2/1	Genome surveillance: with p53, MDM2 ¹²¹
Melanoma ^{103 272} , leukae	emia ^{4 195} , mesothelioma ^{207 291} , pancreatic carcinoma ²⁹
, 100100	n16: CDK4/6 cyclin-dependent kinase inhibitor ²²⁷
$CDVN2 A^{78}$	Coll guale programming (C) with pDP grading D $CDV/1/232$ 268
CDNNZA	Cen-cycle progression (G ₁): with pKb, cyclin-D, CDK4/6
5.14	Cellular senescence
Melanoma ²⁴¹	
CDK (30)	Cyclin-dependent kinase ¹⁰²
$CDK4^{\circ\circ\circ}$	Cell-cycle progression (G_1); with pRB. Cyclin-D. p16 ²³² ²⁶⁸

Table 3 (continued)

Gastric cancer ⁸⁹ , colorecta	Gastric cancer⁸⁹, colorectal²¹³ cancer , lobular breast cancer (?) ²⁰⁹ ²⁷⁰				
CDH1 ¹⁸	Calcium-dependent cell adhesion protein (epithelial): E-cadherin ¹⁹ Cell adhesion, tissue architecture, invasion suppression ²¹ , metastasis ¹⁵ Contact inhibition and adhesion dependence: with APC ¹¹⁷ , β -catenin, p27 ²⁴³				
Proximal colorectal cancer	^{83 301} , myelodysplastic syndrome ³⁹				
GSTT1 ²⁴⁶	Glutathione S-transferase enzymes ²¹⁹ Chemical detoxification; free radical scavenging; tumour chemoresistance.				
Ovarian cancer ¹⁴ , lung car	ncer ²²³ , colorectal cancer ³⁰¹				
<i>GSTM1</i> ²⁰⁴ Glutathione S-transferase enzymes ²¹⁹ Chemical detoxification; free radical scavenging; tumour chemoresistance.					
Breast cancer, ovarian can	Breast cancer, ovarian cancer ⁷⁷				
BRCA1 ^{59 275}	DNA damage response: as component of BASC; with p53 ^{199–298} , ATR ²⁵⁹ Centrosome replication ¹¹³				
Breast cancer ²⁸⁶ , pancreatic cancer ²²²					
BRCA2 ²⁵⁶	Homologous recombination and DNA repair: with BRCA1 and RAD51 ⁵⁴				

Listed are hereditary diseases where: cancer predisposition is a facet of the symptomatology; an underlying gene has been identified; there is some understanding of the function of the encoded protein.

Ordering is to allow juxtaposition of apparently distinct phenotypic manifestations with the same underlying cause (for example, *APC* mutation), or similar phenotypic manifestations with differing underlying causes (for example, Li-Fraumeni syndrome). Beyond that, syndromes are grouped into broad similarity of tumour type (for example, melanoma predisposition).

Parenthesised items following gene names denote recognised sub-classifications of the disease.

Bold entries among the associated diseases denote those typical of the syndrome. Others are those also reported in hereditary disease, or implicated by virtue of gene aberrations found in sporadic cases. Bold entries among the functions of encoded proteins denote the functional class to which the protein product belongs, where this is well defined.

Table 3 (concluded): Hereditary conditions that predispose toward cancer

Proponents of aneuploidy as a cause^{®226} cite the inherently low basal mutation rate, suggesting that alone, it could not account for the number of aberrations seen in many tumours given the time over which they develop. If, however, an early mutation has the consequence of increasing this rate, this argument fails. Consistent with this, mutations in genes associated with DNA repair mechanisms are frequently observed, as are mutations in genes associated with the maintenance of chromosomal stability. A reasonable interpretation of current information is that mutation and aneuploidy are inextricably linked, and once either occurs, the rates of both increase. A mutation may affect the maintenance of chromosomal stability and euploidy as easily as gain or loss of a chromosome may affect basal mutation rate. It is a self-reinforcing cycle that is as likely to be initiated by a chance event affecting one aspect as the other. The search to identify which is the cause, and which the effect, is both misguided and irrelevant.

The immune system and cancer

Many believe that the immune system has an important role in the prevention of cancer. That this is a fallacy becomes evident when it is appreciated that only in relatively few hereditary cancer predisposition syndromes is immunodeficiency present, and in the great majority of hereditary immunodeficiency syndromes, there is no associated predisposition toward cancer.

The progression of cancer

However the progression from normality to malignancy is driven, it appears to proceed through a number of reasonably well defined stages. In tissues of epithelial lineage, it will often begin with hyperplasia: the presence of supernumerary cells not significantly morphologically different from the normal tissue. Dysplasia develops, during which the morphology of the cells diverges from the norm for the tissue of origin. With increasing dysplasia, the growing benign tumour ultimately will warrant the

designation of carcinoma in situ. With invasion into surrounding tissue, the tumour becomes malignant, and if it spreads to distant sites, it has become metastatic.

While these changes may be occurring at the level of the tissue there may or may not be any outward indication of this process. Where symptoms are sufficiently obvious to prompt the seeking of medical advice, they often include lumps or swelling (the origin of the word 'tumour'), pain, fatigue, unusual bleeding or discharge, gastric, intestinal or urinary obstruction, fever, unusual sweating, deficient wound healing, or neurological effects including alteration in sensation or motor control. It is not unusual for cancer to be asymptomatic and discovered through intentional screening, or fortuitously as a result of other medical procedures such as blood tests, X-rays, ultrasound examination, or surgery. When symptomatic however, it is likely that the cancer has been present undetected for some years, and, in the case of solid internal tumours, it is likely that a blood supply to the tumour has already been established. Once cancer is suspected, various diagnostic tools will be applied to verify if this is indeed the case, and if so, to identify the particular type and its stage of progression. From there, a strategy for treatment can be developed.

The treatment of cancer

Conventional treatment

Three major modalities have been the mainstays of cancer treatment since its recognition as a cellular disease: surgery, chemotherapy, and radiotherapy. Clinical experience has led to the development of particular treatment regimens for particular cancer types at various stages, the principal determinant being the degree to which the disease has metastasised, if at all. Where medical imaging and biopsies of the tumour and adjacent lymph nodes indicate that spread in unlikely, a purely local treatment may suffice, typically surgical resection of the tumour and marginal normal tissue, or targeted radiotherapy, delivered either from an external source, or by isotopic implantation.

Where metastasis is known or suspected, a systemic treatment is required. This is generally in the form of chemotherapy using cytotoxic or anti-proliferative drugs. Variations, such as isolated limb perfusion, and combined modalities, such as surgery with local radiotherapy may also be employed. In all cases, whether it depends on the surgeon's skill, the precision of conformant radiotherapy, or the pharmacological and biological attributes of drugs, the efficacy of treatment depends on the discrimination between cancerous and normal cells and the selective extirpation of the former.

Immune system modulation

There is a school of thought that believes that the specificity of the immune system may be harnessed to provide the means of discrimination required. This process began long before the cellular basis of the immune system was known, with Coley's toxins in the nineteenth century. The late twentieth century saw the therapeutic use of recombinant cytokines, and today novel drugs that directly or indirectly affect immune system function are in clinical trial. Attempts have been made to create vaccines from mutated or over-expressed tumour antigens, with some success in animal models. Nevertheless, if no tumorigenic pathogen is present, these approaches may be limited.

The limitations of conventional therapies

To refer to conventional therapies as 'cutting, poisoning, and burning' illustrates well how blunt are the tools of surgery, chemotherapy, and radiotherapy. The greatest obstacles to the success of conventional systemic treatment are the dispersed nature of cancer as a disease and the extremely close biological similarity between malignant and normal cells. To date, the major objective of chemotherapy has been

the selective destruction of proliferating cells, the rationale being that cancer cells are more likely to be dividing. As we learn more about cancer, we are finding that this is perhaps a poor distinction at best. Firstly, the situation is not that every cell in a tumour is dividing more frequently than normal, it is that overall, there is a net excess of cell proliferation over cell death. Alterations to apoptotic mechanisms may be as important as increased cellular proliferative capacity. Secondly, very many normal tissues, such as gut epithelium and haematopoietic precursor cells have an intrinsically high proliferation rate and are therefore detrimentally affected by these drugs, often to the extent of being dose-limiting for therapy. Thirdly, tumour vasculature is both spatially and temporally heterogeneous, with consequences for the uniform delivery of drugs, and hence their efficacy. To overcome these obstacles, ways must be found to exploit the aspects of tumour biology that do differ from the biology of normal cells and tissues.

Novel therapeutic strategies

Gene and anti-sense therapies

In cases where tumour growth occurs only due to the functional failure of a tumour-suppressor, it may in future be possible to supply a replacement for a defective gene^{®174}, but there are immense problems in bringing such gene therapy to the clinic. In particular, delivery of the replacement gene specifically to tumour cells will be required where over-expression in normal cells is associated with toxicity. Even if delivery mechanisms can be developed, ensuring appropriate and sustained levels of gene expression are formidable obstacles.

Conversely, where tumour growth is supported by production of a mutant protein or over-production of a normal one, the possibility of specifically interfering with this exists. The most promising current approach to this is in the use of anti-sense agents^{®53}. These are multi-base nucleic acid analogues whose sequence is the complement of the mRNA of the target protein. When delivered or expressed intracellularly, they will avidly bind such mRNA and interfere with its translation. This technique works well in vitro, but therapeutically, it faces many of the same problems as gene therapy.

Targeting signal transduction

It is now widely appreciated that many of the molecular causes of disease are either components of, or exert their influence via, intracellular signal transduction channels^{®106}, and this may be particularly true of cancer. If drugs that interfere with spurious proliferative signalling can be found or developed, a therapeutic opportunity may exist in the treatment of some types of cancer.

As a class, receptor tyrosine kinases make excellent potential therapeutic targets since their function is often altered in cancer by erroneous expression, mutation, or over-expression of their specific ligand^{®304}. Where this has the effect of stimulating net cellular proliferation, it can drive tumorigenesis. As an example, several novel drugs have been developed that target the epidermal growth factor receptor and a number are now in clinical trial¹⁰⁹²¹¹.

Non-receptor kinases, both tyrosine and serine/threonine, also frequently participate in signal transduction channels and have been implicated in many cancer types. Among theses are the cyclin-dependent kinases (CDKs) and other regulators of the cell division cycle, such as WEE1. Of particular interest is the recent FDA approval of imatinib mesylate for the treatment of chronic myelogenous leukaemia⁴⁶. This drug is a tyrosine kinase inhibitor that counteracts the effects of the erroneous activation of the ABL kinase resulting from its expression as a BCR fusion protein after the chromosomal translocation characteristic of this cancer.

Another target is RAS, a signalling protein that is normally self-regulating. In many cancers however, this regulation is lost, and if triggered, RAS signalling remains active and can drive cellular proliferation. Its activation requires that it become associated with the cell membrane, and for this to occur, RAS must be post-translationally modified by farnesylation. Inhibitors of the farnesyltransferase enzyme that performs this may reduce or prevent aberrant RAS signalling. Compounds of this type are also in clinical trial¹²⁷.

Anti-angiogenic agents

In tissues produced by the normal processes of development and growth, the needs for nutrient and oxygen supply and waste removal are met by the co-establishment of a hierarchy of blood vessels and a network of lymphatic vessels. Since this is not the way in which tumours develop, this mechanism is not available to them. The manner in which cancers resolve this distinguishes them from almost all normal adult tissues: their continuing existence is dependent on their ability to induce angiogenesis. Therefore, therapies that target the proliferation, but not the survival, of vascular endothelial cells should prevent the growth of tumours and probably cause their regression, and do so with minimal toxicity^{®42}. Two approaches to this exist, although in reality they may be different aspects of just one. Firstly, it should be possible to diminish or oppose the effect of growth factors that stimulate endothelial proliferation. This may entail the use of cytokine therapy, as has been used in the treatment of infant haemangioma with interferon- α , or of antagonistic antibodies directed against the receptors for critical growth factors, such as FGF2, VEGF, and angiogenin. Secondly, it may be possible to stimulate activity of the normal process that disables angiogenesis after wound healing and ovulation. Here, the anti-angiogenic properties of several small peptides that are cleavage products of proteins engaged in these processes may be extremely important. One such, angiostatin, a fragment of plasminogen, causes drastic regression of human breast, prostate, and colon tumours implanted into mice, and holds them in this state for the duration of treatment^{\$197}. While no anti-angiogenic drugs have yet been approved for the treatment of human cancer, at least fifteen are in clinical trial, and there is a very real prospect that some, at least, will be efficacious.

Anti-metastatic agents

Among the several hundred distinct normal human cell-types, only one, the leukocyte, has the ability to travel freely within and between tissues. Indeed, displacement of any other type of normal cell into an inappropriate context is generally sufficient to cause its immediate self-destruction though apoptosis, a process termed anoikis⁸⁰. It is thought that this process is mediated through biochemical interactions between cells, and between a cell and the extracellular matrix. When the correct combination of signals is not available to a cell, that is, when it is displaced, it dies. In contrast, the most pernicious aspect of cancer, metastasis, implies that tumour cells can overcome these limitations. Clearly, there is more to metastasis than the fortuitous dislodgement of a cell or a clump of cells from a primary tumour, and some change in biological regulation must be taking place. To detach from the primary tumour, it must be able to decrease its intercellular affinity, and the proteins β -catenin and E-cadherin have been implicated in this role, particularly in gastric cancers^{®190}. To be able to survive in isolation during its travels, it must attain at least substrate-independence, and the integrins are implicated here^{®147}. In the case of individual cells, contact-independence must also be attained, and here again, E-cadherin or its signal transduction subsystem, has been implicated²⁸⁴. To move within and between tissues requires that it have inherent motility, implicating cytoskeletal components^{§118}§173</sup> and cytokine signalling, as with HGF/MET^{®170}. It must be able to pass both between other cells that may normally be strongly cohesive,

and possibly through the basement membrane, and here, matrix metalloproteinases have been implicated^{®244}. These processes must also work in reverse, in that the metastatic seed must be able either to adhere to, or exit through the vessel wall in order for a secondary tumour to form.

The possibility that these activities may be susceptible to modulation presents a therapeutic opportunity, and the search to elucidate the mechanisms governing metastasis, and for the means to influence it is now in progress. It is as yet too early to speculate on how successful this will be.

Pro-drugs

One approach to resolving the issue of general, as opposed to tumour-specific cytotoxicity has been to separate the delivery of a drug from its activation⁸⁶⁰. In this way, a biologically benign pro-drug can be administered systemically and subsequently, its latent therapeutic function activated locally. This approach is open to a great many variations. Higher tumour pro-drug concentration may be achieved by taking advantage of poor tumour vasculature. Systemic pro-drug levels can be allowed to rise until a steady-state is reached, whereupon the majority of the pro-drug can be removed from well-vascularised normal tissue immediately prior to activation. Drug activation may be triggered by radiolytic cleavage, by tumour hypoxia or pH, or by enzymatic activity. In the latter case, endogenous enzymes expressed in the tumour tissue type, or over-expressed in the tumour may be used. Alternatively, exogenous enzymes may be employed. In antibody-directed enzyme pro-drug therapy (ADEPT), such an enzyme is supplied and is targeted to the tumour by a linked antibody. Upon pro-drug delivery, activation only occurs within the tumour. In gene-directed enzyme pro-drug therapy (GDEPT), a gene for the enzyme may be introduced into the tumour, albeit with difficulty, that is subject to tissue-specific expression. Finally, while much of the early work with pro-drugs has employed traditional cytotoxins such as mustard derivatives, there is a great range of potentially suitable agents.

Genetic targeting

A particularly cunning strategy to target tumour cells has been devised that harnesses two aspects of p53 molecular biology: its frequent functional loss in cancer cells, and its active disablement by many viruses as a prerequisite for productive infection. Onyx Pharmaceuticals have engineered an adenovirus, ONYX-015^{®215}, in which the gene responsible for disabling p53 upon infection is non-functional. In consequence, they believe, it will only be in cells where p53 is already non-functional that the virus can replicate, ultimately destroying the host cell in the process. Since all normal human tissues express functional p53, but it is mutated in most tumours, it will only be tumour cells that are destroyed. While attractive theoretically, our knowledge of p53 function is still incomplete, and opinion is divided on the soundness of the underlying premise and on what practical utility this approach will have. This issue will be clarified considerably with the completion of the clinical trials of ONYX-015 that are currently underway¹³⁵. Also developed, but not yet to the same stage, is a similar virus that will target cells lacking the function of another tumour-suppressor, the retinoblastoma-associated protein, pRB.

4 Conclusion

The quest to find effective therapies for cancer is formidable indeed, but each advance we make in understanding the processes underlying it represents a possibility that a point of weakness will be found, and a new avenue for prevention or therapeutic intervention revealed. Our knowledge grows exponentially as increasingly delicate and incisive tools are applied to the tasks of investigating and influencing the workings of the cell. It is utterly inconceivable that this ongoing application of limitless human ingenuity and endeavour will not one day see the scourge of cancer defeated.

7

Refe	erences		
1	Aarnio M, Salovaara R, Aaltonen LA, Mecklin JP and Jarvinen HJ Features of gastric cancer in hereditary non-polyposis colorectal cancer syndr	ome	
2	International Journal of Cancer Abramson DH and Servodidio CA Retinoblastoma	74 :551–5	1997
3	Optometry Clinics Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S	3 :49–61 , Chandrasekharappa S	1993 SC, Collins FS, Spiegel AM,
	Marx SJ and Burns AL Menin interacts with the AP1 transcription factor JunD and represses JunD-ac Cell	tivated transcription 96 :143–52	1999
4	Aguiar RC, Sill H, Goldman JM and Cross NC The commonly deleted region at 9p21-22 in lymphoblastic leukemias spans at gene cluster.	t least 400 kb and includ	les p16 but not p15 or the IFN
	Leukemia	11:233–8	1997
5	Albert LS, Sober AJ and Rhodes AR Cutaneous melanoma and bilateral retinoblastoma	23 ·1001_4	1990
6	Anwar S, Hall C, White J, Deakin M, Farrell W and Elder JB Hereditary non-polyposis colorectal cancer: an updated review	23.1001-4	1000
-	European Journal of Surgical Oncology	26 :635–45	2000
1	Yata Ji, Kishimoto T and Tsukada S Involvement of wiskott-aldrich syndrome protein in B-cell cytoplasmic tyrosine	kinase pathway	M, Kurosaki T, Ochs HD,
0	Blood	93 :2003–12	1999
8	Vidaud M, Vidaud D, Jenkins RB, Bieche I, Kimmel DW, Assouline B, Smith C Vidaud M Germ-line deletion involving the INK4 locus in familial proneness to melanoma	a and nervous system tu	JM, Harpey JP, Calle B and
9	Cancer Research Banin S, Gout I and Brickell P Interaction between Wiskott Aldrich Syndrome protein (WASP) and the Even pr	58 :2298–303	1998
10	Molecular Biology Reports Bartkova J, Lukas J, Guldberg P, Alsner J, Kirkin AF, Zeuthen J and Bartek J	26 :173–7	1999
	The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in Cancer Research	melanoma pathogenesis 56:5475–83	1996
11	Baskaran R, Wood LD, Whitaker LL, Canman CE, Morgan SE, Xu Y, Barlow C Wang JY Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in respons	J, Baltimore D, Wynsha	w-Boris A, Kastan MB and
12	Nature Bataille V, Hiles R and Bishop JA Retinchlastoma, melanoma, and the atvinical mole syndrome	387 :516–9	1997
13	British Journal of Dermatology Bates S and Vousden KH	132 :134–8	1995
14	Mechanisms of p53-mediated apoptosis Cellular and Molecular Life Sciences	55 :28–37	1999
14	GSTM1 null polymorphism and susceptibility to endometriosis and ovarian car <i>Carcinogenesis</i>	ncer 22 :63–66	2001
15	Beavon IR The E-cadherin-catenin complex in tumour metastasis: structure, function and	regulation	2000
16	Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratov Birch JM, Li FP, Garber JE and Haber DA	rich M, Verselis SJ, Isse	Ibacher KJ, Fraumeni JF,
17	Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome Science Bellamy CO	286 :2528–31	1999
17	p53 and apoptosis British Medical Bulletin	53 :522–38	1997
18	Berx G, Becker KF, Hofler H and van Roy F Mutations of the human E-cadherin (CDH1) gene	19 -006 37	1008
19	Berx G, Staes K, van Hengel J, Molemans F, Bussemakers MJ, van Bokhover Cloning and characterization of the human invasion suppressor gene E-cadhe	n A and van Roy F rin (CDH1)	1990
20	Genomics Besson A, Robbins SM and Yong VW	26 :281–9	1995
21	European Journal of Biochemistry Birchmeier W, Hulsken J and Behrens J	263 :605–11	1999
00	E-cadherin as an invasion suppressor Ciba Foundation Symposium	189 :124–36	1995
22	Adherens junction proteins in tumour progression Cancer Surveys	24 :129–40	1995
23	Boardman LA, Thibodeau SN, Schaid DJ, Lindor NM, McDonnell SK, Burgart Hartmann LC	LJ, Ahlquist DA, Podrat	z KC, Pittelkow M and
	Annals of Internal Medicine	128 :896–9	1998

24	Bogler O, Huang HJ, Kleihues P and Cavenee WK					
	The p53 gene and its role in human brain tumors	15.308 27	1995			
25	Boveri T	10.000-21	1999			
	Gustav Fischer Verlag	Jena, Germany	1914			
	Zur Frage der Entstehung maligner Tumoren					
26	Boyle JM, Mitchell EL, Greaves MJ, Roberts SA, Tricker K, Burt E, Varley JM, Birch JM and Scott D					
	British Journal of Cancer	77 :2181–92	1998			
27	Brady HJ and Gil Gomez G					
	Bax. The pro-apoptotic Bcl-2 family member, Bax	aa a (7 50	1000			
20	International Journal of Biochemistry and Cell Biology	30 :647-50	1998			
20	ERM-Merlin and EBP50 protein families in plasma membrane organization and	d function				
	Annual Review of Cell and Developmental Biology	16 :113–43	2000			
29	Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weir	nstein CL, Hruban RH, א	eo CJ and Kern SE			
	Frequent somatic mutations and nomozygous deletions of the p16 (MIS1) ger appears in Nature Genetics 8:4101	ne in pancreatic adenoca	arcinoma [published erratum			
	Nature Genetics	8 :27–32	1994			
30	Campbell CE, Kuriyan NP, Rackley RR, Caulfield MJ, Tubbs R, Finke J and W	/illiams BR				
	Constitutive expression of the Wilms tumor suppressor gene (WT1) in renal ce	ell carcinoma	1009			
31	Canman CE and Lim DS	10:102-0	1998			
51	The role of ATM in DNA damage responses and cancer					
	Oncogene	17 :3301–8	1998			
32	Celebi JT, Shendrik I, Silvers DN and Peacocke M					
	Journal of Medical Genetics	37 ·653–7	2000			
33	Cetta F, Olschwang S, Petracci M, Montalto G, Baldi C, Zuckermann M, Costa	intini RM, Fusco A	2000			
	Genetic alterations in thyroid carcinoma associated with familial adenomatous	polyposis: clinical implie	cations and suggestions for			
	early detection	22 .1021 6	1009			
34	Chadwick RB, Meek JF, Prior TW, Peltomaki P and de La Chapelle A	ZZ .1231–0	1998			
0.	Polymorphisms in a pseudogene highly homologous to PMS2					
	Human Mutation	16 :530	2000			
35	Chan DW, Son SC, Block W, Ye R, Khanna KK, Wold MS, Douglas P, Goodar	rzi AA, Pelley J, Taya Y, dependent, wortmannin	Lavin MF and Lees Miller SP			
	protein kinase					
	Journal of Biological Chemistry	275 :7803–10	2000			
36	Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emn	nert-Buck MR, Debelenk	to LV, Zhuang Z, Lubensky			
	IA, Liotta LA, Crabtree JS, Wang Y, Roe BA, Weisemann J, Boguski MS, Agar Spiegel AM, Burns AL and Mary S L	wal SK, Kester MB, Kim	n YS, Heppner C, Dong Q,			
	Positional cloning of the gene for multiple endocrine neoplasia-type 1					
	Science	276 :404–7	1997			
37	Charames GS, Millar AL, Pal T, Narod S and Bapat B	ad andomatrium?				
	Human Genetics	107 :623–9	2000			
38	Chehab NH, Malikzay A, Appel M and Halazonetis TD					
	Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53	44.070.00	0000			
20	Chen H. Sandler DR. Taylor, M. Shara DL, Liu E. Bloomfield CD, Poll DA	14:278-88	2000			
39	Increased risk for myelodysplastic syndromes in individuals with glutathione tra	ansferase theta 1 (GST)	[1] gene defect			
	Lancet	347 :295–7	1996			
40	Chen P, Gatei M, O'Connell MJ, Khanna KK, Bugg SJ, Hogg A, Scott SP, Hob	son K and Lavin MF				
	Oncogene	elanglectasia cells 18·249–56	1999			
41	Chen PL, Riley DJ and Lee WH					
	The retinoblastoma protein as a fundamental mediator of growth and differentiation	ation signals.				
40	Critical Reviews in Eukaryotic Gene Expression	5 :79–95	1995			
42	New paradigms for the treatment of cancer: the role of anti-angiogenesis agen	ıts				
	Advances in Cancer Research	79 :1–38	2000			
43	Chow KN and Dean DC					
	Domains A and B in the Rb pocket interact to form a transcriptional repressor in Molecular and Cellular Biology	motif 16 :4862_8	1996			
44	Clifford SC. Prowse AH. Affara NA. Buys CH and Maher ER	10.4002 0	1000			
	Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and alleli	c losses at chromosome	e arm 3p in primary renal cell			
	carcinoma: evidence for a VHL-independent pathway in clear cell renal tumour	rigenesis	1009			
45	Cockman ME Masson N. Mole DR Jaakkola P. Chang GW. Clifford SC. Mah	ZZ:200-9 er ER Pugh CW Ratclif	1998 ffe PJ and Maxwell PH			
40	Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lin	idau tumor suppressor p	protein			
	Journal of Biological Chemistry	275 :25733–41	2000			
46	Cohen MH, Williams G, Johnson JR, Duan J, Gobburu J, Rahman A, Benson I	K, Leighton J, Kim SK, V	Nood R, Rothmann M, Chen			
	Approval summary for imatinib mesylate capsules in the treatment of chronic n	nyelogenous leukemia				
	Clin Cancer Research	8 :935–42	2002			
47	Colella S, Nardo T, Botta E, Lehmann AR and Stefanini M	o or the DeCar -the -	biono voriant of your dames			
	nucentical mutations in the CSB gene associated with either Cockayne syndrom pigmentosum	ie or the DeSanctis-caco	chione variant of xeroderma			
	Human Molecular Genetics	9 :1171–5	2000			

48	Conway JE, Chou D, Clatterbuck RE, Brem H, Long DM and Rigamonti D Hemanoichlastomas of the central pervous system in yon Hinpel-Lindau syndr	ome and sporadic dise	ase
	Neurosurgery	48 :55–62	2001
49	Cortez D, Wang Y, Qin J and Elledge SJ Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage Science	response to double-str 286.1162–6	and breaks 1999
50	Cotelingam JD, Witebsky FG, Hsu SM, Blaese RM and Jaffe ES Malignant lymphoma in patients with the Wiskott-Aldrich syndrome		
51	Cancer Investigation Couch V. Lindor NM. Karnes PS and Michels VV	3 :515–22	1985
	von Hippel-Lindau disease Mavo Clin Proc	75 :265–72	2000
52	Crean SJ and Cunningham SJ		
	British Journal of Hospital Medicine	56 :392–7	1996
53	Crooke ST Potential roles of antisense technology in cancer chemotherapy	10 0054 0	
54	Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman A	19:6651–9 R and West SC	2000
	Role of BRCA2 in control of the RAD51 recombination and DNA repair protein <i>Molecular Cell</i>	7 :273–82	2001
55	De Rosa M, Fasano C, Panariello L, Scarano MI, Belli G, Iannelli A, Ciciliano F Evidence for a recessive inheritance of Turcot's syndrome caused by compour Oncogene	⁻ and Izzo P nd heterozygous mutati 19 :1719–23	ons within the PMS2 gene
56	de Toledo SM, Azzam EI, Dahlberg WK, Gooding TB and Little JB ATM complexes with HDM2 and promotes its rapid phosphorylation in a p53-ir	ndependent manner in r	normal and tumor human cells
	Oncogene	19 :6185–6193	2000
57	de Winter JP, Leveille F, van Berkel CG, Rooimans MA, van Der Weel L, Stelt Collins L, Lightfoot J, Leegwater PA, Waisfisz Q, Komatsu K, Arwert F, Pronk Joenje H	enpool J, Demuth I, Mo JC, Mathew CG, Digwe	rgan NV, Alon N, Bosnoyan- ed M, Buchwald M and
	Isolation of a cDNA representing the Fanconi anemia complementation group American Journal of Human Genetics	E gene 67 :1306–8	2000
58	Dell G and Gaston K Human papillomaviruses and their role in cervical cancer	58 .1023 12	2001
59	Deng CX and Brodie SG	30 .1923–42	2001
	Roles of BRCA1 and its interacting proteins. <i>Bioessays</i>	22 :728–37	2000
60	Denny WA Prodrug strategies in cancer therapy		
61	European Journal of Medical Chemistry D'hondt R, Thomas J, Van Oosterom AT and Dewolf-Peeters C	36 :577–95	2001
	Hodgkin's disease in a patient with Von Hippel-Lindau disease. A case report <i>Acta Clinica Belgica</i>	55 :276–8	2000
62	DiCiommo D, Gallie BL and Bremner R Retinoblastoma: the disease, gene and protein provide critical leads to undersi Seminars in Cancer Biology	tand cancer. 10 :255–69	2000
63	Digweed M, Reis A and Sperling K Nijmegen breakage syndrome: consequences of defective DNA double strand	break repair	
64	Bioessays Dong SM, Kim KM, Kim SY, Shin MS, Na EY, Lee SH, Park WS, Yoo NJ, Jano	21 :649–56 g JJ, Yoon CY, Kim JW	1999 , Kim SY, Yang YM, Kim SH,
	Kim CS and Lee JY Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers synd	rome gene in left-sided	colon cancer
65	Cancer Research	58 :3787–90	1998
00	Wilms't unour-suppressor protein isoforms have opposite effects on Igf2 expre p53 genotype	ession in primary embry	onic cells, independently of
66	British Journal of Cancer el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, I	77:253–9 Mercer WE. Kinzler KW	1998 and Vogelstein B
	WAF1, a potential mediator of p53 tumor suppression	75 ·817_25	1993
67	Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M a	nd German J	1000
	Cell	83 :655–66	1995
68	Eng C Genetics of Cowden syndrome: through the looking glass of oncology International Journal of Oncology	12 :701–10	1998
69	Eng C, Li FP, Abramson DH, Ellsworth RM, Wong FL, Goldman MB, Seddon J Mortality from second tumors among long-term survivors of retinoblastoma	J, Tarbell N and Boice J	D Jr
70	Journal of the National Cancer Institute Engel ME, Datta PK and Moses HL Signal transduction by transforming growth factor between encounting and the	85:1121-8	1993
74	Journal of Cellular Biochemistry. Supplement	30–31 :111–22	1998
/ 1	Induction of p21 by the Wilms' tumor suppressor gene WT1	57 .1420 34	1007
72	Evans DG, Sainio M and Baser ME	V1.1720 ⁻ 04	1001
	Journal of Medical Genetics	37 :897–904	2000

7

73	Evans SC and Lozano G		
	The Li-Fraumeni syndrome: an inherited susceptibility to cancer.		
	Molecular Medicine Today	3 :390–5	1997
74	Fearon ER		
	Human cancer syndromes: clues to the origin and nature of cancer.	070.4040 50	4007
75	Science	278:1043-50	1997
75	Flejter WL, McDaniel LD, Jonns D, Friedberg EC and Schultz RA	hanaturaa hu ahramaa	mo and gone transfer
	Correction of xeroderma pigmentosum complementation group D mutant cell p	nenotypes by chromoso	ome and gene transfer:
	Proceedings of the National Academy of Sciences of the USA	80.261 5	1002
76	Frideedings of the National Academy of Sciences of the OSA	Broukel C Wiegant I (
70	Mutations in the APC tumour suppressor gene cause chromosomal instability	Dieukei C, wiegani J, C	Siles RH and Clevers H
	Nature Cell Biology	3 ·433–8	2001
77	Ford D. Easton DE and Peto I		2001
	Estimates of the gene frequency of BRCA1 and its contribution to breast and o	varian cancer incidence	
	American Journal of Human Genetics	57 :1457–62	1995
78	Foulkes WD, Flanders TY, Pollock PM and Hayward NK		
	The CDKN2A (p16) gene and human cancer.		
	Molecular Medicine	3 :5–20	1997
79	Friedrich CA		
	Von Hippel-Lindau syndrome. A pleomorphic condition		
	Cancer	86 :2478–82	1999
80	Frisch SM and Screaton RA		
	Anoikis mechanisms		
	Current Opinion in Cell Biology	13 :555–62	2001
81	Gaillard PH and Wood RD		
	Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repa	air	0004
	Nucleic Acids Research	29 :872–879	2001
82	Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B and Khanna I	KK	
	Role for ATM in DNA damage-induced phosphorylation of BRCA1	co .2200, 204	2000
00	Cancer Research	00.3299-304	2000
83	Cawfortska-Szkiarz B, Lubinski J, Kiadny J, Kurzawski G, Bielicki D, Wojcicki N Polymorphism of CSTM1 gape in patients with colorectal cancer and colonic pr	N, Sych Z and Musial Hi	D
	Experimental and Toxicologic Pathology	51·321_5	1999
84	German I	01.021 0	1000
04	Bloom's syndrome		
	Dermatologic Clinics	13 :7–18	1995
85	Giardiello FM, Petersen GM, Brensinger JD, Luce MC, Cavouette MC, Bacon J	J. Booker SV and Hamil	ton SR
	Hepatoblastoma and APC gene mutation in familial adenomatous polyposis	,	
	Gut	39 :867–9	1996
86	Goss KH and Groden J		
	Biology of the adenomatous polyposis coli tumor suppressor.		
	Journal of Clinical Oncology	18 :1967–79	2000
87	Gottlieb TM and Oren M		
	p53 and apoptosis.		
	Seminars in Cancer Biology	8 :359–68	1998
88	Guan LS, Rauchman M and Wang ZY		
	Induction of Rb-associated protein (RDAp46) by Wilms' tumor suppressor W11	mediates growth inhibit	
00	Journal of Biological Chemistry	2/3:2/04/-50	
89	Guilford PJ, Hopkins JB, Grady WM, Markowitz SD, Willis J, Lynch H, Rajput A	, wiesner GL, Lindor N	M, Burgart LJ, Toro TT, Lee
	E-cadherin dermline mutations define an inherited cancer syndrome dominated	hy diffuse astric canc	or
	Human Mutation	14 ·249–55	1999
90	Guillouf C. Vit JP and Rosselli F	14.210 00	1000
00	Loss of the Fanconi anemia group C protein activity results in an inability to act	tivate caspase-3 after io	nizing radiation
	Biochimie	82 :51–8	2000
91	Guinamard R, Aspenstrom P, Fougereau M, Chavrier P and Guillemot JC		
	Tyrosine phosphorylation of the Wiskott-Aldrich syndrome protein by Lyn and E	Btk is regulated by CDC	42
	FEBS Letters	434 :431–6	1998
92	Guldberg P, thor Straten P, Ahrenkiel V, Seremet T, Kirkin AF and Zeuthen J		
	Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malig	nant melanoma	
	Oncogene	18 :1777–80	1999
93	Gutmann DH, Sherman L, Seftor L, Haipek C, Hoang-Lu K and Hendrix M		
	Increased expression of the NF2 tumor suppressor gene product, merlin, impai	irs cell motility, adhesion	n and spreading
	Human Molecular Genetics	8:267-75	1999
94	Haber DA and Buckler AJ		
	Vi 11: a novel tumor suppressor gene inactivated in wilms' tumor.	4.07 106	1002
05	New Biologist	4.97-100	1992
95	Habiaken Y, Sung P, Plakasn L and Plakasn S Human veroderma pigmentosum group G gene encodes a DNA endopuclease		
	Nucleic Acids Research	22 ·3312_6	1004
96	Haddad F Zugaza JI Louache F Dehili N Crouin C Schwarz K Fischer A V	ainchenker W and Bert	
	The interaction between Cdc42 and WASP is required for SDF-1-induced T-lvn	nphocyte chemotaxis	-3
	Blood	97 :33–8	2001
97	Hagemann TL and Kwan SP		
-	The identification and characterization of two promoters and the complete gend	omic sequence for the V	Viskott-Aldrich syndrome
	gene		
	Biochemical and Biophysical Research Communications	256 :104–9	1999

98	Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaran S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean N and Bale AE	n A, Vorechovsky I, Holr M, Toftgard R, Chenevix	mberg E, Unden AB, Gillies -Trench G, Wainwright B
	Mutations of the human homolog of Drosophila patched in the nevoid basal cel <i>Cell</i>	l carcinoma syndrome 85:841–51	1996
99	Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, Krush A,	J, Berk T, Cohen Z, Tet	u B et al
	The molecular basis of Turcot's syndrome	222.020 47	1005
100		332.039-47	1993
100	Review of mammalian DNA repair and translational implications		
	Journal of Pharmacology and Experimental Therapeutics	295 :1–9	2000
101	Harbour JW and Dean DC		
	The Rb/E2F pathway: expanding roles and emerging paradigms		
100	Genes and Development	14 :2393–409	2000
102	Cdk phosphorylation triggers sequential intramolecular interactions that progres	ssively block Rb function 98:859–69	ns as cells move through G1 1999
103	Hashemi J, Platz A, Ueno T, Stierner U, Ringborg U and Hansson J		
	CDKN2A germ-line mutations in individuals with multiple cutaneous melanoma: Cancer Research	s 60 :6864–7	2000
104	Hattori S, Maekawa M and Nakamura S		
	Identification of neurofibromatosis type I gene product as an insoluble GTPase- Oncogene	-activating protein towar 7:481–5	rd ras p21 1992
105	He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vo	gelstein B and Kinzler k	ŚŴ
	Identification of c-MYC as a target of the APC pathway	004 4 5 00 40	4000
100	Science	281 :1509–12	1998
106	Heidin CH Signal transduction: multiple pathways, multiple options for therapy		
	Stem Cells	19 :295–303	2001
107	Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G	, Warren W, Aminoff M	, Hoglund P, Jarvinen H,
	Kristo P, Pelin K, Ridanpaa M, Salovaara R, Toro T, Bodmer W, Olschwang S,	Olsen AS, Stratton MR	, de la Chapelle A and
	Aaltonen LA		
	A serine/threonine kinase gene defective in Peutz-Jeghers syndrome	201.104 7	1008
108	Herwig S and Strauss M	391.104-7	1998
100	The retinoblastoma protein: a master regulator of cell cycle, differentiation and	apoptosis.	
	European Journal of Biochemistry	246 :581–601	1997
109	Hidalgo M, Siu LL, Nemunaitis J, Rizzo J, Hammond LA, Takimoto C, Eckhardt	SG, Tolcher A, Britten	CD, Denis L, Ferrante K,
	Von Hoff DD, Silberman S and Rowinsky EK		
	Phase I and pharmacologic study of USI-774, an epidermal growth factor recept	otor tyrosine kinase inni	bitor, in patients with
	Journal of Clinical Oncology	19 :3267–79	2001
110	Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Ellec	dge SJ and Mak TW	
	DNA damage-induced activation of p53 by the checkpoint kinase Chk2	0	
	Science	287 :1824–7	2000
111	Hoekstra MF	M protoin kinggo family	
	Current Opinion in Genetics and Development	7.170-5	1997
112	Hovens CM and Kave AH		1001
	The tumour suppressor protein NF2/merlin:the puzzle continues		
	Journal of Clinical Neuroscience	8 :4–7	2001
113	Hsu LC and White RL		
	BRCA1 is associated with the centrosome during mitosis	95 -12083 8	1008
114	Huschtscha LL and Reddel RR	33 .12903–0	1990
114	p16(INK4a) and the control of cellular proliferative life span		
	Carcinogenesis	20 :921–6	1999
115	Hwang BJ and Chu G		
	Purification and characterization of a human protein that binds to damaged DN.	A 22:1657 66	1002
116	IARC n53 mutation database	52.1057-00	ndev html
117	lives M and Tomlinson IP	11110.// 000/11/000/11	
	The interactions of APC, E-cadherin and beta-catenin in tumour development a	and progression.	
	Journal of Pathology	182 :128–37	1997
118	Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T and Narumiya S		
	An essential part for Rho-associated kinase in the transcellular invasion of tume	or cells	4000
110	Wature Medicine	ວ:221–5 1	1999
119	Somatic mutation of the APC gene in thyroid carcinoma associated with familia	l adenomatous polypos	is
	Japanese Journal of Cancer Research	90 :372–6	1999
120	Izatt L, Greenman J, Hodgson S, Ellis D, Watts S, Scott G, Jacobs C, Liebmani Identification of germline missense mutations and rare allelic variants in the AT Genes Chromosomes and Cancer	n R, Zvelebil MJ, Mathe M gene in early-onset b 26 :286–94	ew C and Solomon E preast cancer 1999
121	James MC and Peters G		
	Alternative product of the p16/CKDN2A locus connects the Rb and p53 tumor s	suppressors.	
	Progress in Cell Cycle Research	4 :71–81	2000
122	Jarvis L, Bathurst N, Mohan D and Beckly D		
	Diseases of the Colon and Rectum	31 :907–14	1988

7

123	Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O, Back V Peutz-Jenners syndrome is caused by mutations in a povel serine threopine ki	N and Zimmer M	
	Nature Genetics	18 :38–43	1998
124	Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG Human homolog of patched, a candidate gene for the basal cell nevus syndror	G, Myers RM, Cox DR, ne	Epstein EH and Scott MP
125	Jongmans W and Hall J	212.1000-71	1990
	Cellular responses to radiation and risk of breast cancer. European Journal of Cancer	35 :540–8	1999
126	Karow JK, Chakraverty RK and Hickson ID The Bloom's syndrome gene product is a 3'-5' DNA helicase	272 :30611_4	1007
127	Karp JE, Kaufmann SH, Adjei AA, Lancet JE, Wright JJ and End DW Current status of clinical trials of farnesyltransferase inhibitors		1007
128	Current Opinion in Oncology Kaufman DK, Kimmel DW, Parisi JE and Michels VV	13 :470–6	2001
100	A familial syndrome with cutaneous malignant melanoma and cerebral astrocy Neurology	toma 43 :1728–31	1993
129	Gadd45 is a nuclear cell cycle regulated protein which interacts with p21Cip1	11 :1675–83	1995
130	Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, Taya Y, Gabri	ielli B, Chan D, Lees-Mi	ller SP and Lavin MF
	ATM associates with and phosphorylates p53: mapping the region of interactio <i>Nature Genetics</i>	n 20 :398–400	1998
131	Khanna KK Cancer risk and the ATM gene: a continuing debate.	00 -705 000	0000
132	Journal of the National Cancer Institute Kim AS, Kakalis LT, Abdul-Manan N, Liu GA and Rosen MK	92 :795–802	2000
	Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome prof	tein 404 ·151–8	2000
133	Kim M, Katayose Y, Li Q, Rakkar AN, Li Z, Hwang SG, Katayose D, Trepel J, G	Cowan KH and Seth P	2000
	Recombinant adenovirus expressing Von Hippel-Lindau-mediated cell cycle ar dependent kinase inhibitor p27Kip1	rest is associated with t	the induction of cyclin-
124	Biochemical and Biophysical Research Communications	253 :672–7	1998
134	Substrate specificities and identification of putative substrates of ATM kinase fa Journal of Biological Chemistry	amily members 274 :37538–43	1999
135	Kirn D Oncolytic virotherapy for cancer with the adenovirus dl1520 (Onyx-015): results	s of phase I and II trials	2001
136	Kluwe L, Bayer S, Baser ME, Hazim W, Haase W, Funsterer C, Mautner VF	1.525-56	2001
	Identification of NF2 germ-line mutations and comparison with neurofibromatos Human Genetics 99 :292]	sis 2 phenotypes [publis	shed erratum appears in
407	Human Genetics	98 :534–8	1996
137	Malignant melanoma in xeroderma pigmentosum patients: report of five cases European Journal of Surgical Oncology	23 :43–7	1997
138	Koga H, Araki N, Takeshima H, Nishi T, Hirota T, Kimura Y, Nakao M and Say	a H	lack evens in the FDM
	homology domain	e 2 (INF2) genes which	Tack exons in the Erivi-
139	Oncogene Koh PS, Hughes GC, Faulkner GR, Keeble WW and Bagby GC.	17 :801–10	1998
100	The Fanconi anemia group C gene product modulates apoptotic responses to not suppress expression of receptors of the tumor necrosis factor receptor sup	tumor necrosis factor-a erfamily	lpha and Fas ligand but does
140	Experimental Hematology Kolluri R, Tolias KF, Carpenter CL, Rosen FS and Kirchhausen T	27:1-8	1999
	Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cde Proceedings of the National Academy of Sciences of the USA	c42 93 :5615–8	1996
141	Eukaryotic DNA mismatch repair		
142	Current Opinion in Genetics and Development	9 :89–96	1999
	Malignancy in neurofibromatosis type 1 Oncologist	5 :477–85	2000
143	Kraemer KH, Lee MM and Scotto J Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in Arabiyos of Dermatology	830 published cases	1097
144	Kroft SH, Finn WG, Singleton TP, Ross CW, Sheldon S and Schnitzer B Follicular large cell lymphoma with immunoblastic features in a child with Wisk	ott-Aldrich syndrome: a	n unusual immunodeficiency-
	related neoplasm not associated with Epstein-Barr virus American Journal of Clinical Pathology	110 :95–9	1998
145	Kruyt FA, Dijkmans LM, Arwert F and Joenje H Involvement of the Fanconi's anemia protein FAC in a pathway that signals to the Cancer Pasearch	the cyclin B/cdc2 kinase) 1007
146	Kudoh T, Ishidate T, Moriyama M, Toyoshima K and Akiyama T	JI .2274-01	1991
1 4 7	G1 phase arrest induced by Wilms tumor protein WT1 is abrogated by cyclin/C Proceedings of the National Academy of Sciences of the USA	DK complexes 92:4517–21	1995
147	Signaling by integrin receptors. Oncogene	17 :1365–73	1998

148	Kumaresan KR and Lambert MW Fanconi anemia, complementation group A, cells are defective in ability to proc links	duce incisions at sites o	f psoralen interstrand cross-
149	Carcinogenesis Lal G and Gallinger S	21 :741–51	2000
150	Seminar adenomatous polyposis. Seminars in Surgical Oncology Lambert WC, Kuo HR and Lambert MW	18 :314–23	2000
	Xeroderma pigmentosum Dermatologic Clinics	13 :169–209	1995
151	Lau N, Feldkamp MM, Roncari L, Loehr AH, Shannon P, Gutmann DH and Gu Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/Ał Journal of Neuropathology and Experimental Neurology	ha A KT signaling in a neurof 59 :759–67	ibromatosis 1 astrocytoma 2000
152	Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomak Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer <i>Cell</i>	ri P, Sistonen P, Aaltone	en LA, Nystrom-Lahti M et al
153	Lee TH, Moffett P and Pelletier J The Wilms' tumor suppressor gene (wt1) product represses different functional	classes of transcription	al activation domains
154	Nucleic Acids Research Leverrier Y, Lorenzi R, Blundell MP, Brickell P, Kinnon C, Ridley AJ and Thrasl Cutting Edge: The Wiskott-Aldrich Syndrome Protein Is Required for Efficient F	27:2889–97 her AJ Phagocytosis of Apoptot	1999 ic Cells
155	Journal of Immunology Li DM and Sun H	166 :4831–4834	2001
156	PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle Proceedings of the National Academy of Sciences of the USA Lil Bales ES, Peterson CA and Legerski RJ	95 :15406–11	1998
	Characterization of molecular defects in xeroderma pigmentosum group C Nature Genetics	5 :413–7	1993
157	Liao MJ and Van Dyke T Critical role for Atm in suppressing V(D)J recombination-driven thymic lymphor Genes and Development	na 13 :1246 50	1000
158	Lindor NM, Furuichi Y, Kitao S, Shimamoto A, Arndt C and Jalal S Am Rothmund-Thomson syndrome due to RECQ4 helicase mutations: report and (clinical and molecular of	omparisons with Bloom
	syndrome and Werner syndrome Journal of Medical Genetics	90 :223–8	2000
159	Little M, Holmes G, Bickmore W, van Heyningen V, Hastie N and Wainwright E DNA binding capacity of the WT1 protein is abolished by Denys-Drash syndror <i>Human Molecular Genetics</i>	3 me WT1 point mutations 4:351–8	3 1995
160	Liu B, Parsons R, Papadopoulos N, Nicolaides NC, Lynch HT, Watson P, Jass A, Hamilton SR, Vogelstein B and Kinzler KW	JR, Dunlop M, Wyllie A	, Peltomaki P, de la Chapelle
161	Nature Medicine	2 :169–74	1996
101	RB1 gene mutations in retinoblastoma Human Mutation	14 :283–8	1999
162	Lorenzi R, Brickell PM, Katz DR, Kinnon C and Thrasher AJ Wiskott-Aldrich syndrome protein is necessary for efficient IgG-mediated phage Blood	ocytosis 95 :2943–6	2000
163	Lu SL, Kawabata M, Imamura T, Akiyama Y, Nomizu T, Miyazono K and Yuasa HNPCC associated with germline mutation in the TGF-beta type II receptor ger	a Y ne	2000
164	Nature Genetics Lubensky IA, Pack S, Ault D, Vortmeyer AO, Libutti SK, Choyke PL, Walther M	19 :17–8 IM, Linehan WM and Zh	1998 nuang Z
	Multiple neuroendocrine tumors of the pancreas in von Hippel-Lindau disease analysis	patients: histopathologic	cal and molecular genetic
165	Ma L, Siemssen ED, Noteborn HM and van der Eb AJ The xeroderma pigmentosum group B protein ERCC3 produced in the baculov	rirus system exhibits DN	IA helicase activity
166	Nucleic Acids Research Maes P, Brichard B, Vermylen C, Cornu G and Ninane J	22 :4095–102	1994
107	Medical and Pediatric Oncology	30 :170–4	1998
107	Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Coc American Journal of Human Genetics	c, stelanni in and Len ckayne syndrome 62 :77–85	1998
168	Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymer	Iwai S, Takio K and Ha erase eta	naoka F
169	Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K and Elledge SJ Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro	333.700-4	1999
170	Proceedings of the National Academy of Sciences of the USA Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT and Salgia R Role of the henatocyte growth factor receptor, c-Met, in oncogenesis and poter	97 :10389–94	2000 bition
171	Cytokine and Growth Factor Reviews May P and May E	13 :41–59	2002
170	Twenty years of p53 research: structural and functional aspects of the p53 prot Oncogene	tein 18 :7621–36 p.BE and Boldwin AC	1999
172	WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-once EMBO Journal	11 BE and Baidwin AS ogene 18 :3990–4003	1999

173	McClatchey AI, Saotome I, Mercer K, Crowley D, Gusella JF, Bronson RT and Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a <i>Genes and Development</i>	Jacks T range of highly metasta 12 :1121–33	atic tumors 1998
174	McCormick F Cancer gene therapy: fringe or cutting edge?		
175	Nature Rev Cancer McGarrity TJ, Kulin HE and Zaino RJ Peutz-Jeghers syndrome	1 :130–41	2001
176	American Journal of Gastroenterology Meng JJ, Lowrie DJ, Sun H, Dorsey E, Pelton PD, Bashour AM, Groden J, Rat	95 :596–604 ner N and Ip W	2000
	Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, of ERM proteins by merlin Journal of Neuroscience. Research	and between merlin and 62:491–502	2000
177	Menke AL, van der Eb AJ and Jochemsen AG The Wilms' tumor 1 gene: oncogene or tumor suppressor gene?		
178	International Review of Cytology Meyn MS Atavia telengiostacia, econor and the pathobiology of the ATM gone	181 :151–212	1998
179	Clinical Genetics Miki H, Nonoyama S, Zhu Q, Aruffo A, Ochs HD and Takenawa T	55 :289–304	1999
	Tyrosine kinase signaling regulates Wiskott-Aldrich syndrome protein function, <i>Cell Growth and Differentiation</i>	which is essential for m 8:195–202	egakaryocyte differentiation 1997
180	Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Ho Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro <i>Oncogene</i>	offman B and Reed JC and in vivo 9 :1799–805	1994
181	Miyamoto H, Shuin T, Torigoe S, Iwasaki Y and Kubota Y Retinoblastoma gene mutations in primary human bladder cancer <i>British Journal of Cancer</i>	71 :831–5	1995
182	Moll AC, Imhof SM, Bouter LM and Tan KE Second primary tumors in patients with retinoblastoma. A review of the literatur	re.	1007
183	Morgan SE and Kastan MB p53 and ATM: cell cycle, cell death, and cancer.	18:27-34	1997
184	Advances in Cancer Research Mukhopadhyay D, Knebelmann B, Cohen HT, Ananth S, Sukhatme VP The year Hinnel Lindou tumor suppressor goes product interacts with Sp1 to re-	71:1–25	1997
	activity Molecular and Cellular Biology	17:5629–39	1997
185	Nakamura M, Zhou XZ and Lu KP Critical role for the EB1 and APC interaction in the regulation of microtubule po	lymerization	2001
186	Ng HK, Tse JY and Poon WS Cerebellar astrocytoma associated with von Hippel-Lindau disease: case repor	t with molecular finding:	2001 s 1999
187	Nichols AF, Ong P and Linn S Mutations specific to the xeroderma pigmentosum group E Ddb- phenotype		
188	Journal of Biological Chemistry Nicolaides NC, Papadopoulos N, Liu B, Wei YF, Carter KC, Ruben SM, Rosen al	CA, Haseltine WA, Flei	1996 ischmann RD, Fraser CM et
100	Mutations of two PMS homologues in hereditary nonpolyposis colon cancer Nature	371 :75–80	1994
109	Epstein-Barr virus infection and human malignancies Int ernational Journal of Experimental Pathology	82 :149–70	2001
190	Nollet F, Berx G and van Roy F The role of the E-cadherin/catenin adhesion complex in the development and p Molecular and Cellular Biology Research Communications	progression of cancer 2 .77–85	1999
191	Nord B, Platz A, Smoczynski K, Kytola S, Robertson G, Calender A, Murat A, V Owen D, Lassam N, Hogg D, Larsson C and Teh BT	Weintraub D, Burgess J,	, Edwards M, Skogseid B,
192	International Journal of Cancer North K Am	87 :463–7	2000
193	Neurofibromatosis Type 1 Journal of Medical Genetics Nouspikel T and Clarkson SG	97 :119–127	2000
	Mutations that disable the DNA repair gene XPG in a xeroderma pigmentosum Human Molecular Genetics	group G patient 3 :963–7	1994
194	Ochs HD The Wiskott-Aldrich syndrome <i>Clinical Reviews in Alleray and Immunology</i>	20 :61–86	2001
195	Okuda T, Shurtleff SA, Valentine MB, Raimondi SC, Head DR, Behm F, Curcic Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute b	p-Brint AM, Liu Q, Pui Cl ymphoblastic leukemia	H, Sherr CJ et al
196	Olschwang S, Richard S, Boisson C, Giraud S, Laurent-Puig P, Resche F and Germline mutation profile of the VHL gene in von Hippel-Lindau disease and in Human Mutation	Thomas G sporadic hemangioblas	stoma
197	O'Reilly MS, Holmgren L, Chen C and Folkman J Angiostatin induces and sustains dormancy of human primary tumors in mice	12.424-30	1990
	Nature Medicine	2 :689–92	1996

198	O'Sullivan E, Kinnon C and Brickell P		
	International Journal of Biochemistry and Cell Biology	31 :383–7	1999
199	Ouchi T, Monteiro AN, August A, Aaronson SA and Hanafusa H		
	BRCA1 regulates p53-dependent gene expression	95.2302 6	1008
200	Pang Q, Fagerlie S, Christianson TA, Keeble W, Faulkner G, Diaz J, Rathbun	RK and Bagby GC	1990
	The Fanconi anemia protein FANCC binds to and facilitates the activation of S	TAT1 by gamma interfe	ron and hematopoietic
	growth factors Molecular and Cellular Biology	20 ·4724_35	2000
201	Parry DM, MacCollin MM, Kaiser-Kupfer MI, Pulaski K, Nicholson HS, Bolesta	M, Eldridge R and Guse	ella JF
	Germ-line mutations in the neurofibromatosis 2 gene: correlations with disease American Journal of Human Genetics	e severity and retinal abr 59:529–39	normalities 1996
202	Pause A, Lee S, Lonergan KM and Klausner RD The yon Hippel-Lindau tumor suppressor gene is required for cell cycle exit up	on serum withdrawal	
	Proceedings of the National Academy of Sciences of the USA	95 :993–8	1998
203	Pearsall J (ed) The New Oxford Dictionary of English		
	Oxford University Press, Oxford, England	ISBN 0-19-861263-X	1998
204	Pearson WR, Vorachek WR, Xu SJ, Berger R, Hart I, Vannais D and Patterson	۱D	
	Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on hu	Iman chromosome 1p13	1003
205	Polakis P	JJ .220-55	1990
	Wnt signaling and cancer		
206	Genes and Development	14 :1837–51	2000
206	A review of inherited cancer syndromes and their relevance to oral squamous	cell carcinoma	
	Oral Oncology	37 :1–16	2001
207	Prins JB, Williamson KA, Kamp MM, Van Hezik EJ, Van der Kwast TH, Hagen	neijer A and Versnel MA	esothelioma
	International Journal of Cancer	75 :649–53	1998
208	Pritchard Jones K and King Underwood L		
	The Wilms tumour gene WT1 in leukaemia	27 ·207_20	1007
209	Rahman N, Stone JG, Coleman G, Gusterson B, Seal S, Marossy A, Lakhani S	SR, Ward A, Nash A, Mo	cKinna A, A'Hern R, Stratton
	MR and Houlston RS	· · · - · · ·	
	Lobular carcinoma in situ of the breast is not caused by constitutional mutation British Journal of Cancer	is in the E-cadherin gen 82.568–70	e 2000
210	Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E	, Aveyard J, Sibley K, W	hitaker L, Knowles M, Bishop
	JN and Bishop DT		
	A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system Human Molecular Genetics	m tumour syndrome fan 10:55–62	nily 2001
211	Ranson M, Hammond LA, Ferry D, Kris M, Tullo A, Murray PI, Miller V, Averbu	ich S, Ochs J, Morris C,	Feyereislova A, Swaisland H
	and Rowinsky EK	aitar is well telerated an	d active in patients with colid
	malignant tumors: results of a phase I trial		u active in patients with solid,
	Journal of Clinical Oncology	20 :2240–50	2002
212	Rawlings SL, Crooks GM, Bockstoce D, Barsky LW, Parkman R and Weinberg	y KI trome: correlation of acc	elerated cell death and
	attenuated bcl-2 expression		
	Blood	94 :3872–82	1999
213	Richards FM, McKee SA, Rajpar MH, Cole TR, Evans DG, Jankowski JA, McK		
	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can	Ceown C, Sanders DS a	nd Maher ER
214	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i>	Reown C, Sanders DS an icer and colorectal canc 8:607–10	nd Maher ER er 1999
	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Res LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK	Reown C, Sanders DS an ocer and colorectal canc 8:607–10 ((eds)	nd Maher ER er 1999
	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute Bethesda Maryland LISA	keown C, Sanders DS a ncer and colorectal canc 8:607–10 ((eds) http://seer.cancer.gov/l	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001
215	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can Human Molecular Genetics Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM	keown C, Sanders DS a incer and colorectal canc 8:607–10 ((eds) http://seer.cancer.gov/l	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001
215	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selectiv	keown C, Sanders DS a incer and colorectal canc 8:607–10 ((eds) http://seer.cancer.gov/l ve adenovirus	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001
215	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can Human Molecular Genetics Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selectiv British Journal of Cancer Rotman G and Shiloh Y	keown C, Sanders DS a incer and colorectal cance 8:607–10 ((eds) http://seer.cancer.gov/l ve adenovirus 86:5–11	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001
215 216	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selective <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function.	keown C, Sanders DS a ncer and colorectal canc 8:607–10 ((eds) http://seer.cancer.gov/l /e adenovirus 86:5–11	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002
215 216	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selectiv <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i>	<pre>keown C, Sanders DS a ncer and colorectal canc 8:607–10 ((eds) http://seer.cancer.gov/l ve adenovirus 86:5–11 7:1555–63</pre>	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998
215 216 217	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selective <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i> Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinsor Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malion	<pre>keown C, Sanders DS a incer and colorectal canc 8:607-10 ((eds) http://seer.cancer.gov// ve adenovirus 86:5-11 7:1555-63 n l ant melanomas</pre>	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998
215 216 217	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can Human Molecular Genetics Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selective British Journal of Cancer Rotman G and Shiloh Y ATM: from gene to function. Human Molecular Genetics Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinson Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malign Journal of Investigative Dermatology	<pre>keown C, Sanders DS a ncer and colorectal canc 8:607–10 ((eds) http://seer.cancer.gov/l ve adenovirus 86:5–11 7:1555–63 n I aant melanomas 112:509–11</pre>	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998 1999
215 216 217 218	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selectiv <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i> Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinsor Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malign <i>Journal of Investigative Dermatology</i> Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Muner	<pre>keown C, Sanders DS a incer and colorectal canc 8:607–10 ((eds) http://seer.cancer.gov/l /e adenovirus 86:5–11 7:1555–63 n l ant melanomas 112:509–11 nitsu S and Polakis P</pre>	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998 1999
215 216 217 218	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selective <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i> Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinsor Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malign <i>Journal of Investigative Dermatology</i> Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munen Association of the APC gene product with beta-catenin <i>Science</i>	keown C, Sanders DS an incer and colorectal cance 8:607–10 ((eds) http://seer.cancer.gov/l /e adenovirus 86:5–11 7:1555–63 n I mant melanomas 112:509–11 nitsu S and Polakis P 262:1731–4	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998 1999
215 216 217 218 219	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selectiv <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i> Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinsor Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malign <i>Journal of Investigative Dermatology</i> Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munen Association of the APC gene product with beta-catenin <i>Science</i> Salinas AE and Wong MG	keown C, Sanders DS a incer and colorectal cance 8:607–10 ((eds) http://seer.cancer.gov/l ve adenovirus 86:5–11 7:1555–63 n I ant melanomas 112:509–11 nitsu S and Polakis P 262:1731–4	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998 1999
215 216 217 218 219	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selective <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i> Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinson Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malign <i>Journal of Investigative Dermatology</i> Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munen Association of the APC gene product with beta-catenin <i>Science</i> Salinas AE and Wong MG Glutathione S-transferases—a review Current Modiciand Chamiert in	keown C, Sanders DS a incer and colorectal cance 8:607–10 ((eds) http://seer.cancer.gov/l ve adenovirus 86:5–11 7:1555–63 n I ant melanomas 112:509–11 nitsu S and Polakis P 262:1731–4 6:270, 200	nd Maher ER er 1999 Publications/CSR1973_1998/ 2002 1998 1999 1993
 215 216 217 218 219 220 	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selective <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i> Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinsor Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malign <i>Journal of Investigative Dermatology</i> Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munen Association of the APC gene product with beta-catenin <i>Science</i> Salinas AE and Wong MG Glutathione S-transferasesa review <i>Current Medicinal Chemistry</i> Savitsky K Bar-Shira A, Gilad S, Botman G, Ziv Y, Vanagaite L, Tagle DA, Sm	 keown C, Sanders DS and cer and colorectal cance 8:607–10 k(eds) http://seer.cancer.gov/live adenovirus 86:5–11 7:1555–63 n I anant melanomas 112:509–11 nitsu S and Polakis P 262:1731–4 6:279–309 nith S, Uziel T, Sfez S et al. 	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998 1999 1993
215 216 217 218 219 220	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selective <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i> Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinsor Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malign <i>Journal of Investigative Dermatology</i> Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munen Association of the APC gene product with beta-catenin <i>Science</i> Salinas AE and Wong MG Glutathione S-transferasesa review <i>Current Medicinal Chemistry</i> Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Sm A single ataxia telangiectasia gene with a product similar to PI-3 kinase	keown C, Sanders DS an incer and colorectal cance 8:607–10 ((eds) http://seer.cancer.gov/l /e adenovirus 86:5–11 7:1555–63 n I ant melanomas 112:509–11 nitsu S and Polakis P 262:1731–4 6:279–309 nith S, Uziel T, Sfez S et	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998 1999 1993 1999 al
 215 216 217 218 219 220 201 	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selectiv <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i> Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinsor Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malign <i>Journal of Investigative Dermatology</i> Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munen Association of the APC gene product with beta-catenin <i>Science</i> Salinas AE and Wong MG Glutathione S-transferasesa review <i>Current Medicinal Chemistry</i> Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Sm A single ataxia telangiectasia gene with a product similar to PI-3 kinase <i>Science</i>	keown C, Sanders DS an incer and colorectal cance 8:607–10 ((eds) <i>http://seer.cancer.gov/l</i> //e adenovirus 86:5–11 7:1555–63 n I ant melanomas 112:509–11 nitsu S and Polakis P 262:1731–4 6:279–309 nith S, Uziel T, Sfez S et 268:1749–53	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998 1999 1993 1999 al
215 216 217 218 219 220 221	Germline E-cadherin gene (CDH1) mutations predispose to familial gastric can <i>Human Molecular Genetics</i> Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK SEER Cancer Statistics Review 1973–1998 National Cancer Institute, Bethesda, Maryland, USA Ries S and Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selectiv <i>British Journal of Cancer</i> Rotman G and Shiloh Y ATM: from gene to function. <i>Human Molecular Genetics</i> Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W and Tomlinsor Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malign <i>Journal of Investigative Dermatology</i> Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munen Association of the APC gene product with beta-catenin <i>Science</i> Salinas AE and Wong MG Glutathione S-transferasesa review <i>Current Medicinal Chemistry</i> Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Sm A single ataxia telangiectasia gene with a product similar to PI-3 kinase <i>Science</i> Schaffner C, Idler I, Stilgenbauer S, Dohner H and Lichter P Mantle cell lymphoma is characterized by inactivation of the ATM gene	keown C, Sanders DS an incer and colorectal cance 8:607–10 ((eds) http://seer.cancer.gov/l /e adenovirus 86:5–11 7:1555–63 n I ant melanomas 112:509–11 nitsu S and Polakis P 262:1731–4 6:279–309 nith S, Uziel T, Sfez S et 268:1749–53	nd Maher ER er 1999 Publications/CSR1973_1998/ 2001 2002 1998 1999 1993 1999 al 1995

7

222	Schutte M, da Costa LT, Hahn SA, Moskaluk C, Hoque AT, Rozenblum E, Wei Identification by representational difference analysis of a homozygous deletion region	instein CL, Bittner M, M in pancreatic carcinom	eltzer PS, Trent JM et al a that lies within the BRCA2
	Proceedings of the National Academy of Sciences of the USA	92 :5950–4	1995
223	Seidegard J, Pero RW, Markowitz MM, Roush G, Miller DG and Beattie EJ Isoenzyme(s) of glutathione transferase (class Mu) as a marker for the suscept Carcinogenesis	tibility to lung cancer: a 11:33–6	follow up study 1990
224	Selby CP and Sancar A Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated A ternary transcription complex of stalled RNA polymerase II	TPase but is not a helic	ase and does not disrupt the
225	Journal of Biological Chemistry Sellers WB and Kaelin WG Jr	272 :1885–90	1997
220	Role of the retinoblastoma protein in the pathogenesis of human cancer . Journal of Clinical Oncology	15 :3301–12	1997
220	Aneuploidy and cancer. <i>Current Opinion in Oncology</i>	12 :82–8	2000
227	Serrano M The tumor suppressor protein p16INK4a.		
220	Experimental Cell Research	237 :7–13	1997
220	The naevoid basal-cell carcinoma syndrome (Gorlin syndrome) is a chromosor Mutation Research	nal instability syndrome 397 :287–92	1998
229	Shafman TD, Levitz S, Nixon AJ, Gibans LA, Nichols KE, Bell DW, Ishioka C, I	sselbacher KJ, Gelman	R, Garber J, Harris JR and
	Haber DA Prevalence of germline truncating mutations in ATM in women with a second b controllatoral turner.	preast cancer after radia	tion therapy for a
	Genes, Chromosomes and Cancer	27 :124–9	2000
230	Shaw RJ, McClatchey AI and Jacks T Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by <i>Journal of Biological Chemistry</i>	y adhesion and growth 273 :7757–64	arrest stimuli 1998
231	She HY, Rockow S, Tang J, Nishimura R, Skolnik EY, Chen M, Margolis B and Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 a <i>Molecular Biology of the Cell</i>	I Li W and the epidermal growt 8 :1709–21	h factor receptor in living cells 1997
232	Sherr CJ The Pezcoller lecture: cancer cell cycles revisited.	60 :2680.05	2000
233	Shieh SY, Ahn J. Tamai K. Tava Y and Prives C	60.3689-95	2000
200	The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphory [published erratum appears in <i>Genes and Development</i> 14 :750] <i>Genes and Development</i>	/late p53 at multiple DN 14 ·289–300	A damage-inducible sites
234	Shih IM, Yu J, He TC, Vogelstein B and Kinzler KW	14.200 000	2000
	The beta-catenin binding domain of adenomatous polyposis coli is sufficient for Cancer Research	r tumor suppression 60:1671–6	2000
235	Shiloh Y Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders Annual Review of Genetics	but genes apart. 31 :635–62	1997
236	Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei YF, Moggs JG, Carter K de Rooij J, Jaspers NG, Hoeijmakers JH and Wood RD	C, Shell BK, Evans E, c	le Jong MC, Rademakers S,
	Xeroderma pigmentosum group F caused by a defect in a structure-specific DN Cell	NA repair endonuclease 86:811–22	1996
237	Altered expression of the WT1 wilms tumor suppressor gene in human breast <i>Proceedings of the National Academy of Sciences of the USA</i>	cancer 94 :8132–7	1997
238	Silvin C, Belisle B and Abo A A role for WASP in TCR-mediated transcriptional activation independent of act	in polymerization	
239	Journal of Biological Chemistry Simpson L and Parsons R PTEN: Life as a Tumor Suppressor	276 :21450–7	2001
	Experimental Cell Research	264 :29–41	2001
240	Smith DP, Spicer J, Smith A, Swift S and Ashworth A The mouse Peutz-Jeghers syndrome gene Lkb1 encodes a nuclear protein kin Human Molecular Genetics	ase 8:1479_85	1000
241	Soufir N, Avril MF, Chompret A, Demenais F, Bombled J, Spatz A, Stoppa-Lyo	nnet D, Benard J and B	ressac de Paillerets B
	Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone familie Group	es in France. The Frenc	ch Familial Melanoma Study
242	Spacey SD, Gatti RA and Bebb G	7:209–16	1998
	The molecular basis and clinical management of ataxia telangiectasia Canadian Journal of Neurological Sciences	27 :184–91	2000
243	St Croix B, Sheehan C, Rak JW, Florenes VA, Slingerland JM and Kerbel RS E-Cadherin-dependent growth suppression is mediated by the cyclin-depender <i>Journal of Cell Biology</i>	nt kinase inhibitor p27(K 142 :557–71	(IP1) 1998
244	Stamenkovic I Matrix metalloproteinases in tumor invasion and metaetasia		
0.45	Seminars in Cancer Biology	10 :415–33	2000
245	Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, JE, de Sauvage F and Rosenthal A The tumour-suppressor gene patched encodes a candidate recentor for Sonic	Pennica D, Goddard A,	Phillips H, Noll M, Hooper
	Nature	384 :129–34	1996

246	Strange RC and Fryer AA Chapter 19. The glutathione S-transferases: influence of polymorphism on can	ncer susceptibility.	1000
247	Su GH, Hruban RH, Bansal RK, Bova GS, Tang DJ, Shekher MC, Westerman Germline and somatic mutations of the STK11/LKB1 Peutz-Jeghers gene in pa	AM, Entius MM, Goggi ancreatic and biliary car	ns M, Yeo CJ and Kern SE
248	Sung P, Bailly V, Weber C, Thompson LH, Prakash L and Prakash S Human xeroderma pigmentosum group D gene encodes a DNA helicase	154 :1835–40	1999
249	Nature Suspiro A, Fidalgo P, Cravo M, Albuquerque C, Ramalho E, Leitao CN and Co The Muir-Torre syndrome: a rare variant of hereditary nonpolyposis colorectal	365:852–5 osta Mira F cancer associated with	hMSH2 mutation
250	American Journal of Gastroenterology Svedberg H, Chylicki K, Baldetorp B, Rauscher FJ 3rd and Gullberg U Constitutive expression of the Wilms' tumor gene (WT1) in the leukemic cell lin	93 :1572–4 ne U937 blocks parts of	the differentiation program
251	Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, Mccormick F, Francke L Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs,	J and Abo A is implicated in actin po	lymerization
252	Takagi M, Delia D, Chessa L, Iwata S, Shigeta T, Kanke Y, Goi K, Asada M, E Defective control of apoptosis, radiosensitivity, and spindle checkpoint in ataxia	guchi M, Kodama C an a telangiectasia	d Mizutani S
253	Cancer Research Tamura M, Gu J, Danen EH, Takino T, Miyamoto S and Yamada KM PTEN interactions with focal adhesion kinase and suppression of the extracelle	58 :4923–9 ular matrix-dependent p	1998 shosphatidylinositol 3-
254	kinase/Akt cell survival pathway Journal of Biological Chemistry Tamura M. Gu. I. Tran H and Yamada KM	274 :20693–703	1999
254	PTEN gene and integrin signaling in cancer Journal of the National Cancer Institute	91 :1820–8	1999
255	Tanaka K, Miura N, Satokata I, Miyamoto I, Yoshida MC, Satoh Y, Kondo S, Y Analysis of a human DNA excision repair gene involved in group A xeroderma <i>Nature</i>	asul A, Okayama H and pigmentosum and cont 348:73–6	d Okada Y aining a zinc-finger domain 1990
256	Tavtigian SV, Simard J, Rommens J, Couch F, Shattuck-Eidens D, Neuhauser Lyonnet D, Belanger C, Bell R, Berry S, Bogden R, Chen Q, Davis T, Dumont Jiang P, Kehrer R, Leblanc JF, Goldgar DE et al The complete BRCA2 gene and mutations in chromosome 13g-linked kindreds	n S, Merajver S, Thorlao M, Frye C, Hattier T, Ja	cius S, Offit K, Stoppa- immulapati S, Janecki T,
057	Nature Genetics	12 :333–7	1996
257	Multiple endocrine neoplasiasyndromes of the twentieth century	83 :0617 00	1009
258	Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY,	Taya Y, Prives C and A	braham RT
	A role for ATR in the DNA damage-induced phosphorylation of p53 Genes and Development	13 :152–7	1999
259	Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ and Functional interactions between BRCA1 and the checkpoint kinase ATR during Genes and Development	d Abraham RT g genotoxic stress 14 :2989–3002	2000
260	Timmers C, Taniguchi T, Hejna J, Reifsteck C, Lucas L, Bruun D, Thayer M, C M	cox B, Olson S, D'Andre	a AD, Moses R and Grompe
	Positional cloning of a novel Fanconi anemia gene, FANCD2 Molecular Cell	7 :241–8	2001
261	Tominaga K, Morisaki H, Kaneko Y, Fujimoto A, Tanaka T, Ohtsubo M, Hirai M Role of human Cds1 (Chk2) kinase in DNA damage checkpoint and its regulat	<i>I</i> , Okayama H, Ikeda K ion by p53	and Nakanishi M
262	Traboulsi EI, Zimmerman LE and Manz HJ Cutaneous malignant melanoma in survivors of heritable retinoblastoma.	214:31403-7	1999
263	Archives of Ophthalmology Ueki K, Wen-Bin C, Narita Y, Asai A and Kirino T	106 :1059–61	1988
	Tight association of loss of merlin expression with loss of heterozygosity at chr Cancer Research	romosome 22q in spora 59 :5995–8	dic meningiomas 1999
264	Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Be Stumm M, Weemaes CM, Gatti RA, Wilson RK, Digweed M, Rosenthal A, Spe Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmeger	eckmann G, Seemanova erling K, Concannon P a n breakage syndrome	a E, Cooper PR, Nowak NJ, nd Reis A
265	van der Burgt I, Chrzanowska KH, Smeets D and Weemaes C Nijmegen breakage syndrome	93:407-70	1998
266	Journal of Medical Genetics Vazquez F and Sellers WR The PTEN tumor suppressor protein: an antagonist of phosphoipositide 3-kina	33 :153–6	1996
267	Biochimica et Biophysica Acta Vermeulen W, Scott RJ, Rodgers S, Muller HJ, Cole J, Arlett CF, Kleijer WJ, B	1470 :M21–35 Bootsma D, Hoeijmakers	2000 3 JH and Weeda G
268	American Journal of Human Genetics Vidal A and Koff A	ns in the DNA repair an 54 :191–200	u anscription gene ERCC3 1994
	Cell-cycle inhibitors: three families united by a common cause Gene	247 :1–15	2000
269	Vincent JP and Briscoe J Morphogens		
270	Current Biology	11:R851–4	2001
270	E-cadherin inactivation in lobular carcinoma in situ of the breast: an early even British Journal of Cancer	it in tumorigenesis 76 :1131–3	1997

271	Wahl GM, Linke SP, Paulson TG and Huang LC		
	Cancer Surveys	29 ·183–219	1997
272	Walker G.L. Elores JF. Glendening JM. Lin AH. Markl ID and Fountain JW	20.100 210	1007
	Virtually 100% of melanoma cell lines harbor alterations at the DNA level withi	n CDKN2A, CDKN2B, c	or one of their downstream
	targets.		
	Genes, Chromosomes and Cancer	22 :157–63	1998
273	Wang J, Otsuki T, Youssoufian H, Foe JL, Kim S, Devetten M, Yu J, Li Y, Dun	n D and Liu JM	the first data and have the -
	ediated apoptosis	pletic progenitors from a	eath induced by Fas-
	Cancer Research	58 :3538–41	1998
274	Wang Q. Lasset C. Desseigne F. Saurin JC. Maugard C. Navarro C. Ruano E.	. Descos L. Trillet-Lenoi	r V. Bosset JF and Puisieux A
	Prevalence of germline mutations of hMLH1, hMSH2, hPMS1, hPMS2, and hM	ISH6 genes in 75 Frend	ch kindreds with nonpolyposis
	colorectal cancer		
	Human Genetics	105 :79–85	1999
275	Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ and Qin J	ition and ronair of aborr	
	Genes and Development	14 .927–39	2000
276	Webster NJ, Kong Y, Sharma P, Haas M, Sukumar S and Seely BL		2000
	Differential effects of Wilms tumor WT1 splice variants on the insulin receptor	promoter	
	Biochemical and Molecular Medicine	62 :139–50	1997
277	Weng LP, Brown JL and Eng C		
	PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinas	e/Akt-dependent and -ir	2001
278	Weng I P. Brown, II. and Eng C.	10.237-242	2001
210	PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein photo	sphatase activity and up	p-regulating p27 via its lipid
	phosphatase activity in a breast cancer model	. , ,	
	Human Molecular Genetics	10 :599–604	2001
279	Western PS and Sinclair AH		
	Sex, genes, and neat: triggers of diversity	290 .624_31	2001
280	Westohal CH Rowan S Schmaltz C Elson A Eisher DE and Leder P	200.024 01	2001
	atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but no	t in resistance to acute	radiation toxicity
	Nature Genetics	16 :397–401	1997
281	Wiener JS, Coppes MJ and Ritchey ML		
	Current concepts in the biology and management of wilms tumor	159 -1316_25	1008
282	Williams K.I. Boyle JM Birch JM Norton JD and Scott D	100.1010 20	1000
	Cell cycle arrest defect in Li-Fraumeni Syndrome: a mechanism of cancer pred	disposition?	
	Oncogene	14 :277–82	1997
283	Wijnen J, de Leeuw W, Vasen H, van der Klift H, Moller P, Stormorken A, Meij	ers-Heijboer H, Lindhou	it D, Menko F, Vossen S,
	Moslein G, Tops C, Brocker-Vriends A, Wu Y, Hotstra R, Sijmons R, Corneliss Eamilial endometrial cancer in female carriers of MSH6 cermine mutations	e C, Morreau H and Fo	ade R
	Nature Genetics	23 :142–4	1999
284	Woo DK, Kim HS, Lee HS, Kang YH, Yang HK and Kim WH		
	Altered expression and mutation of beta-catenin gene in gastric carcinomas an	nd cell lines	
~~-	International Journal of Cancer	95 :108–13	2001
285	Wood RD DNA damage recognition during nucleotide excision repair in mammalian cells		
	Biochimie	, 81 :39–44	1999
286	Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gree	ory S, Gumbs C and M	icklem G
	Identification of the breast cancer susceptibility gene BRCA2 [published erration	um appears in Nature 3	79 :749]
	Nature	378 :789–92	1995
287	Wu R, Lopez-Correa C, Rutkowski JL, Baumbach LL, Glover TW and Legius E		
	Germine mutations in NF1 patients with malignancies Genes Chromosomes and Cancer	26 :376–80	1999
288	Wu RC. Li X and Schonthal AH		1000
	Transcriptional activation of p21WAF1 by PTEN/MMAC1 tumor suppressor		
	Molecular and Cell Biochemistry	203 :59–71	2000
289	Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O'Neill TB, Cric	k KE, Pierce KA, Lane	WS, Rathbun G, Livingston
	ATM phosphorylation of Niimegen breakage syndrome protein is required in a	DNA damage response	
	Nature	405 :477–82	2000
290	Xie Y, de Winter JP, Waisfisz Q, Nieuwint AW, Scheper RJ, Arwert F, Hoatlin I	ME, Ossenkoppele GJ,	Schuurhuis GJ and Joenje H
	Aberrant Fanconi anaemia protein profiles in acute myeloid leukaemia cells		
004	British Journal of Haematology	111 :1057–64	2000
291	Codeletion of p15 and p16 in primary malignant mesothelioma		
	Oncogene	11 :511–5	1995
292	Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS and Baltimore D		
	Targeted disruption of ATM leads to growth retardation, chromosomal fragmer	ntation during meiosis, in	mmune defects, and thymic
	lymphoma	40 0444 00	1000
202	Genes and Development	10:2411-22 N. Kiebido T. Kowakawi	1996 S. Robo M. Vomorrata I
293	Hosaka M. Shuin T and Yao M	in, ristilua T, rawakami	o, daua ivi, tamamoto I,
	Germ-line mutation analysis in patients with von Hippel-Lindau disease in Japa	an: an extended study o	f 77 families
	Japanese Journal of Cancer Research	91 :204–12	2000
294	Yuasa M, Masutani C, Eki T and Hanaoka F	the veroderne -!	toour voriant (VD) /
	Oncogene	19 :4721–8	2000
	-		

- 1	2	-	1
. 1	a.		1
	x	1	
		e.	

295	Yuille MA and Coignet LJ		
	The ataxia telangiectasia gene in familial and sporadic cancer		
	Recent Results in Cancer Research	154 :156–73	1998
296	Youssoufian H		
	Fanconi anemia and breast cancer: what's the connection?		
	Nature Genetics	27 :352–3	2001
297	Zbar B		
	Von Hippel-Lindau disease and sporadic renal cell carcinoma.		
	Cancer Surveys	25 :219–32	1995
298	Zhang H, Somasundaram K, Peng Y, Tian H, Zhang H, Bi D, Weber BL and el-	Deiry WS	
	Oncodene	16 ·1713_21	1998
200	Zhang XX, Vik TA, Ryder, IW, Srour EE, Jacks T, Shannon K, and Clann DW	10.1710 21	1000
235	Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response	se to multiple cytokines	
	Journal of Experimental Medicine	187 :1893–902	1998
300	Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zo and Lee EY	dzienicka MZ, Gatti RA,	Shay JW, Ziv Y, Shiloh Y
	Functional link between ataxia-telangiectasia and Nijmegen breakage syndrom	e gene products	
	Nature	405:473-7	2000
301	Zhong S, Wyllie AH, Barnes D, Wolf CR and Spurr NK		
	Relationship between the GSTM1 genetic polymorphism and susceptibility to b	ladder, breast and colo	n cancer
	Carcinogenesis	14 :1821–4	1993
302	Zumbrunn J, Kinoshita K, Hyman AA and Nathke IS		
	Binding of the adenomatous polyposis coli protein to microtubules increases m	icrotubule stability and i	is regulated by GSK3beta
	phosphorylation		
	Current Biology	11 :44–49	2001
303	Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N and Dracopoli NC		
	Germline mutations in the p16INK4a binding domain of CDK4 in familial melan	oma	
	Nature Genetics	12 :97–9	1996
304	Zwick E, Bange J and Ullrich A		
	Receptor tyrosine kinases as targets for anticancer drugs		
	Trends in Molecular Medicine	8 :17–23	2002